Micro cantilever

Product name

BL-AC10FS-A2

Silicon nitride cantilever with triangular plate-like tip

$\underline{\mathrm{BL}}-\underline{\mathrm{AC}} \underline{10} \underline{\mathrm{~F}} \underline{\mathrm{~S}}-\underline{\mathrm{A}} \underline{2}$
BL: Olympus Bio-Lever
AC : main application is AC mode measurement
10 : Lever length of $9 \mu \mathrm{~m}$ (around $10 \mu \mathrm{~m}$)
F : Carbon nano fiber tip
S: Gold reflex coating (Single side)
A: 12 chips / unit
2: Chip thickness 0.3 mm

Chip

The chip has a rectangular cantilever on one side of it. The cantilever lies flat on a base, $5 \mu \mathrm{~m}$ step height, to take a space between a chip surface and a sample while scanning.

Dimensions

tip side view
 side view

Material

Tip and Lever	Silicon nitride
Metal coating (tip side)	Carbon on Silicon nitride cantilever
Metal coating (reflex side)	Gold / Chromium
Chip	Silicon (4-6 ohm.cm)

Probe

Macroscopically, the lever and tip are shaped in bird-beak. The actual probe is a small
fibril of Carbon nano fiber.

Dimensions

	Nominal value	Typical range
Probe length of Carbon fiber (nm)	-	less than 100
Tip radius of Carbon fiber (nm)	7	less than 10
Carbon fiber width (70 nm)* (nm)	24	15-35
Carbon fiber tilt angle (tip tilt compensation) (deg.)	$\begin{array}{cc} \hline \text { (toward lever end) } & +22(0-+35) \\ \text { (side) } & 0(-6-+6) \end{array}$	

Diameter of the CNF probe at 70 apex

	Nominal value	Typical range
Probe support length** ($\mu \mathrm{m}$)	1.2	0.6-2.0
Probe support tip half angle (deg.)	(front side view) less than 20	

The probe support is a triangular plate-like tip

Cantilever

Dimensions

Calculated mechanical properties

	Nominal value	Typical range
Resonant frequency (MHz)	1.5	$1.0-2.0$
Spring constant	$(\mathrm{N} / \mathrm{m})$	0.1
$0.02-0.2$		

