SPM PROBES & TEST STRUCTURES MikroMasch® product catalogue # MikroMasch® HQ SPM Tips - · Tip sharpness better than 10 nm - · High Q-factor and smooth resonance curves - · Ideal reflectivity from the backside of the cantilever - · Alignment grooves for all single cantilever probes # MikroMasch® SPM Probes & Test Structures www.spmtips.com ## MikroMasch® Headquarters #### Innovative Solutions Bulgaria Ltd. 48 Joliot Curie St. 1113 Sofia, Bulgaria phone: +359 2 865-8629 fax: +359 2 963-0732 info@mikromasch.com sales@mikromasch.com ## MikroMasch® Europe #### NanoAndMore GmbH Spilburg Bld. A1,Steinbühlstrasse 7 D-35578 Wetzlar, Germany phone: +49 (0) 6441 2003561 fax: +49 (0) 6441 2003562 europe@mikromasch.com ## MikroMasch® USA #### NanoAndMore USA Corp. 21 Brennan Street, Suite 10 Watsonville, CA 95076, USA Toll Free (US): +1 866 SPMTIPS (776-8477) phone: +1 831-536-5970 fax: +1 831-475-4264 usa@mikromasch.com ## MikroMasch® Distributor # **Silicon Nitride Probes** We are happy to announce the introduction of MikroMasch Silicon Nitride XNC12 series* of AFM probes. These probes are intended for contact mode measurements on biological and other soft matter specimen. The main features of the back side gold coated XNC12/Cr-Au BS and the overall gold coated XNC12/Cr-Au models are as follows: - 2 triangular silicon nitride cantilevers with 0.08 N/ m and 0.32 N/m on each side of the holder chip - Square pyramid silicon nitride tips with typical radii 10 nm (uncoated) and 30 nm (gold coated) - Chip size 3.4 * 1.6 * 0.5 mm We always listen to our customers and make sure to provide you with want you need for your AFM research. The XNC12 probes are now available for sale through all our distribution channels. * See specifications on page 15 # **HQ Probes** The HQ Line (High Quality Line) is MikroMasch well-established state-of-the-art manufacturing and quality control technology. HQ probes are distinguished by their high quality and repeatability of characteristics. In particular, the probes have very consistent tip shape and radius, cantilever stiffness and resonance frequency, and laser reflectivity even for uncoated cantilevers. #### RADIUS OF CURVATURE The radius of curvature measures the sharpness of a particular probe. Typically, the sharper the curvature radius the more fragile a silicon tip is. Conversely, a larger curvature radius provides greater durability, but reduces the benefits of a sharper tip. Achieving a consistent balance delivers reliable and accurate results. 94% of HQ probes have a radius of curvature between 7 and 10 nm. #### TIP SHAPE FACTOR A higher value indicates a higher aspect ratio probe. A tighter range of values indicates a more consistent tip shape. Results of the tip shape factor tests show consistent and close grouping of data. Known tip shape insures accuracy of results. 92% of HQ probes have an aspect ratio between 1.4 and 1.8. ## **RESONANCE FREQUENCY** Probes are designed to maintain a tight range of resonance frequencies. Reliability in cantilever specifications ensures dependable measurement results. # The New HQ Line & Test Structures | | Probe chip specifications | |-----------|--| | | REGULAR Noncontact and Contact silicon probes 6 | | TIP | HIGH RESOLUTION Hi'Res-C: High Resolution silicon probes | | HARD | LONG SCANNING / LIFETIME Hardened DLC coated silicon probes | | 7 | CONDUCTIVE Conductive Noncontact and Contact silicon probes 10 DPER: High Resolution Conductive silicon probes 12 DPE: Low Noise Conductive silicon probes 13 | | U | MAGNETIC Magnetic Noncontact silicon probes | | 4×^ | SILICON NITRIDE PROBES Silicone Nitride SPM Probes | | no
TIP | TIPLESS Noncontact and Contact Tipless silicon probes | | | MIX & MATCH Mix&Match | | | TEST STRUCTURES TGXYZ Series Calibration standards 18 TGX Series Calibration standards 18 TGF11 Series Calibration standards 19 PA Series Calibration standards 19 HOPG 20 | | • | RECOMMENDATIONS | | | Recommendations for specific applications | # HQ:NSC/CSC 1 - lever | Cantilever material n-type silicon | |--| | Tip shape | | Tip height | | Alignment grooves on the back side of the chip | # HQ:XSC 4 - lever | Cantilever material n-type silicon | |------------------------------------| | Tip shape | | Tip height | # **HQ:NSC/CSC 3 - lever** | Cantilever material n-type silicon | | |------------------------------------|--| | Tip shape | | | Tip height | | Series: NSC 35, NSC 36, CSC 37, CSC 38 # HQ: NSC/CSC Tipless 3 - lever | Cantilever material | | | | | | | | . n-type silicon | |---------------------|--|--|--|--|--|--|--|------------------| Series:NSC 35, NSC 36, CSC 37, CSC 38 Tipless # XNC12 4 - lever | Cantilever material silicon nitride | |-------------------------------------| | Tip shape | | Tip height | Series: XNC 12 # HQ: NSC, CSC & XSC ## Noncontact (NSC), Contact (CSC) and 4 - Lever (XSC) silicon probes SEM image of the regular Pyramidal silicon etched probes* are characterized by high tip sharpness and narrow resonance peaks, making them very suitable for topography imaging in dynamic AFM modes and compositional mapping. These probes are available in a wide range of resonance frequencies and spring constants. #### Tip properties: Back side coating: Tip radius ~ 8 nm Tip material.....silicon no Al....none Cr-Au BS . . Au 30 nm on Cr 20 nm sublayer | HQ:NSC14 | Cantilever | Available | Length | Width | Thickness | Resonanc | e Frequency | Force | e Constant | | |--|------------|------------------------------|------------------|-----------------|--------------------|-----------|----------------------|---------------------|------------------|--| | HQ:NSC14 | Series | Coatings | I, $\pm 5~\mu m$ | $w,\pm 3~\mu m$ | ±3 μm ± 0.5 μm kHz | | kHz | | N/m | | | HQ:NSC14 | | | | | | (typical) | (range) | (typical) | (range) | | | HQ:NSC15 | ■ ▼ | ▼ | ▼ | ▼ | ▼ | ▼ | ▼ | • | ▼ | | | HQ:NSC16 | HQ:NSC14 | /No Al, /Al BS | 125 | 25 | 2.1 | 160 | 110 - 220 | 5.0 | 1.8 - 13 | | | HQ:CSC17 | HQ:NSC15 | /No Al, /Al BS, /Cr-Au BS | 125 | 30 | 4.0 | 325 | 265 - 410 | 40 | 20 - 80 | | | HQ:NSC18 /No Al, /Al BS, /Cr-Au BS 225 27.5 3.0 75 60 -90 2.8 1.2 - 5.5 HQ:NSC19** /No Al, /Al BS 125 22.5 1.0 65 25 - 120 0.5 0.05 - 2.5 HQ:NSC35 lever A | HQ:NSC16 | /No Al, /Al BS | 225 | 37.5 | 7.0 | 190 | 170 - 210 | 45 | 30 - 70 | | | HQ:NSC35 lever A | HQ:CSC17 | /No Al, /Al BS | 450 | 50 | 2.0 | 13 | 10 - 17 | 0.18 | 0.06 - 0.40 | | | HQ:NSC35 lever A | HQ:NSC18 | /No Al, /Al BS, /Cr-Au BS | 225 | 27.5 | 3.0 | 75 | 60 - 90 | 2.8 | 1.2 - 5.5 | | | HQ:NSC35 lever A lever B /No Al, /Al BS, /Cr-Au BS 90 35 2.0 300 185 - 430 16 4.8 - 44 lever C 130 35 2.0 150 95 - 205 5.4 1.7 - 14 HQ:NSC36 lever A lever B /No Al, /Al BS, /Cr-Au BS 90 35 2.0 150 95 - 205 5.4 1.7 - 14 HQ:NSC36 lever A lever B /No Al, /Al BS, /Cr-Au BS 90 32.5 1.0 90 30 - 160 1.0 0.1 - 4.6 lever B /No Al, /Al BS, /Cr-Au BS 90 32.5 1.0 130 45 - 240 2 0.2 - 9 lever C 130 32.5 1.0 65 25 - 115 0.6 0.06 - 2.7 HQ:CSC37 lever A 250 35 2.0 40 30 - 55 0.8 0.3 - 2 lever B /No Al, /Al BS 350 35 2.0 20 15 - 30 0.3 0.1 - 0.6 lever C 300 35 2.0 30 20 - 40 0.4 0.1 - 1 HQ:CSC38 lever A 250 32.5 1.0 20 8 - 32 0.09 0.01 - 0.3 lever B /No Al, /Al BS 350 32.5 1.0 10 5 - 17 0.03 0.003 - 0.3 lever B /No Al, /Al BS 350 32.5 1.0 10 5 - 17 0.03 0.003 - 0.3 lever B /No Al, /Al BS 350 32.5 1.0 14 6 - 23 0.05 0.005 - 0.2 HQ:XSC11 lever A 500 30 2.7 15 12 - 18 0.2 0.1 - 0.4 lever B /No Al, /Al BS 150 30 2.7 155 115 - 200 7 3 - 16 | HQ:NSC19** | /No Al, /Al BS | 125 | 22.5 | 1.0 | 65 | 25 - 120 | 0.5 | 0.05 - 2.3 | | | lever A lever B /No AI, /AI BS, /Cr-Au BS 90 35 2.0 300 185 - 430 16 4.8 - 44
lever C 130 35 2.0 150 95 - 205 5.4 1.7 - 14 HQ:NSC36 lever A lever B /No AI, /AI BS, /Cr-Au BS 90 32.5 1.0 90 30 - 160 1.0 0.1 - 4.6 lever B /No AI, /AI BS, /Cr-Au BS 90 32.5 1.0 130 45 - 240 2 0.2 - 9 lever C 130 32.5 1.0 65 25 - 115 0.6 0.06 - 2.7 HQ:CSC37 lever A 250 35 2.0 40 30 - 55 0.8 0.3 - 2 lever B /No AI, /AI BS 350 35 2.0 20 15 - 30 0.3 0.1 - 0.6 lever C 300 35 2.0 30 20 - 40 0.4 0.1 - 1 HQ:CSC38 lever A 250 32.5 1.0 10 5 - 17 0.03 0.003 - 0.3 lever B /No AI, /AI BS 350 32.5 1.0 10 5 - 17 0.03 0.003 - 0.3 lever B /No AI, /AI BS 350 32.5 1.0 10 5 - 17 0.03 0.003 - 0.3 lever C 300 30 2.7 15 12 - 18 0.2 0.1 - 0.4 lever B /No AI, /AI BS 210 30 2.7 30 60 - 100 2.7 1.1 - 5.6 lever B /No AI, /AI BS 210 30 2.7 355 115 - 200 7 3 - 16 lever B /No AI, /AI BS 210 30 2.7 155 115 - 200 7 3 - 16 lever B /No AI, /AI BS 210 30 2.7 155 115 - 200 7 3 - 16 lever B /No AI, /AI BS 210 30 2.7 155 115 - 200 7 3 - 16 lever B /No AI, /AI BS 210 30 2.7 30 60 - 100 2.7 1.1 - 5.6 lever B /No AI, /AI BS 210 30 2.7 355 115 - 200 7 3 - 16 lever B /No AI, /AI BS 210 30 2.7 355 | | | | | | **ScanAsy | st® compatible - Sca | anAsyst® is a trade | mark of Bruker C | | | lever B | HQ:NSC35 | | | | | | | | | | | lever C | lever A | | 110 | 35 | 2.0 | 205 | 130 - 290 | 8.9 | 2.7 - 24 | | | HQ:RSC36 lever A 110 32.5 1.0 90 30-160 1.0 0.1-4.6 lever B /No Al, /Al BS, /Cr-Au BS 90 32.5 1.0 130 45-240 2 0.2-9 lever C 130 32.5 1.0 65 25-115 0.6 0.06-2.7 HQ:CSC37 lever A 250 35 2.0 40 30-55 0.8 0.3-2 lever B /No Al, /Al BS 350 35 2.0 20 15-30 0.3 0.1-0.6 lever C 300 35 2.0 30 20-40 0.4 0.1-1 HQ:CSC38 lever A 250 32.5 1.0 20 8-32 0.09 0.01-0.3 lever B /No Al, /Al BS 350 32.5 1.0 10 5-17 0.03 0.003-0.1 lever C 300 32.5 1.0 14 6-23 0.05 0.005-0.2 HQ:XSC11 lever A 210 30 2.7 15 12-18 0.2 0.1-0.4 lever B /No Al, /Al BS 210 30 2.7 80 60-100 2.7 1.1-5.6 lever C /No Al, /Al BS 150 30 2.7 155 115-200 7 3-16 How C 7 3-16 150 30 2.7 155 115-200 7 3-16 HO SC11 Invert B 210 30 2.7 3.5 115-200 7 3-16 How C 7 3-16 150 30 2.7 3.5 115-200 7 3-16 HO SC11 Invert B 7 150 150 150 7 3-16 HO SC11 Invert B 7 150 150 150 150 30 2.7 155 115-200 7 3-16 HO SC11 Invert B 7 150 | lever B | /No Al, /Al BS, /Cr-Au BS | 90 | 35 | 2.0 | 300 | 185 - 430 | 16 | 4.8 - 44 | | | lever A | lever C | | 130 | 35 | 2.0 | 150 | 95 - 205 | 5.4 | 1.7 - 14 | | | lever B | HQ:NSC36 | | | | | | | | | | | lever C | lever A | | 110 | 32.5 | 1.0 | 90 | 30 - 160 | 1.0 | 0.1 - 4.6 | | | HQ:CSC37 lever A | lever B | /No Al, /Al BS, /Cr-Au BS | 90 | 32.5 | 1.0 | 130 | 45 - 240 | 2 | 0.2 - 9 | | | HQ:CSC37 lever A | lever C | / NO AI, / AI DO, / CI-AU DO | 130 | 32.5 | 1.0 | 65 | 25 - 115 | 0.6 | 0.06 - 2.7 | | | lever A 250 35 2.0 40 30-55 0.8 0.3-2 lever B /No Al, /Al BS 350 35 2.0 20 15-30 0.3 0.1-0.6 lever C 300 35 2.0 30 20-40 0.4 0.1-1 HQ:CSC38 lever A 250 32.5 1.0 20 8-32 0.09 0.01-0.3 lever B /No Al, /Al BS 350 32.5 1.0 10 5-17 0.03 0.003-0.1 lever C 300 32.5 1.0 14 6-23 0.05 0.005-0.2 HQ:XSC11 lever A 500 30 2.7 15 12-18 0.2 0.1-0.4 lever B /No Al, /Al BS 210 30 2.7 80 60-100 2.7 1.1-5.6 lever C 150 30 2.7 155 115-200 7 3-16 Rever C 300 300 2.7 300 | П | | | | | | | | | | | lever B | HQ:CSC37 | | | | | | | | | | | lever C 300 35 2.0 30 20-40 0.4 0.1-1 HQ:CSC38 lever A 250 32.5 1.0 20 8-32 0.09 0.01-0.3 lever B /No Al, /Al BS 350 32.5 1.0 10 5-17 0.03 0.003-0.1 lever C 300 32.5 1.0 14 6-23 0.05 0.005-0.2 HQ:XSC11 lever A 500 30 2.7 15 12-18 0.2 0.1-0.4 lever B /No Al, /Al BS 210 30 2.7 80 60-100 2.7 1.1-5.6 lever C 150 30 2.7 155 115-200 7 3-16 | lever A | | 250 | 35 | 2.0 | 40 | 30 - 55 | 0.8 | 0.3 - 2 | | | HQ:XSC11 lever A 250 32.5 1.0 20 8-32 0.09 0.01-0.3 lever B /No Al, /Al BS 350 32.5 1.0 10 5-17 0.03 0.003-0.1 lever C 300 32.5 1.0 14 6-23 0.05 0.005-0.2 HQ:XSC11 lever A 500 30 2.7 15 12-18 0.2 0.1-0.4 lever B /No Al, /Al BS 210 30 2.7 80 60-100 2.7 1.1-5.6 lever C 150 30 2.7 155 115-200 7 3-16 | lever B | /No Al, /Al BS | 350 | 35 | 2.0 | 20 | 15 - 30 | 0.3 | 0.1 - 0.6 | | | lever A 250 32.5 1.0 20 8-32 0.09 0.01-0.3 | lever C | | 300 | 35 | 2.0 | 30 | 20 - 40 | 0.4 | 0.1 - 1 | | | lever B /No Al, /Al BS 350 32.5 1.0 10 5-17 0.03 0.003-0.1 lever C 300 32.5 1.0 14 6-23 0.05 0.005-0.2 lever C 300 32.5 1.0 14 6-23 0.05 0.005-0.2 lever A lever A lever B /No Al, /Al BS 150 30 2.7 15 12-18 0.2 0.1-0.4 lever C 150 30 2.7 155 115-200 7 3-16 | HQ:CSC38 | | | | | | | | | | | No Al, /Al BS 150 300 32.5 1.0 14 6-23 0.05 0.005 - 0.2 | lever A | | 250 | 32.5 | 1.0 | 20 | 8 - 32 | 0.09 | 0.01 - 0.36 | | | HQ:XSC11 lever A 500 30 2.7 15 12-18 0.2 0.1-0.4 lever B /No Al, /Al BS 150 30 2.7 155 115-200 7 3-16 | lever B | /No Al, /Al BS | 350 | 32.5 | 1.0 | 10 | 5 - 17 | 0.03 | 0.003 - 0.1 | | | HQ:XSC11 lever A | lever C | | 300 | 32.5 | 1.0 | 14 | 6 - 23 | 0.05 | 0.005 - 0.2 | | | lever A 500 30 2.7 15 12-18 0.2 0.1-0.4 lever B /No Al, /Al BS 210 30 2.7 80 60-100 2.7 1.1-5.6 lever C 150 30 2.7 155 115-200 7 3-16 | | | | | | | | | | | | lever B /No Al, /Al BS 210 30 2.7 80 60 - 100 2.7 1.1 - 5.6 lever C 150 30 2.7 155 115 - 200 7 3 - 16 | HQ:XSC11 | | | | | | | | | | | /No Al, /Al BS 150 30 2.7 155 115 - 200 7 3 - 16 | lever A | | 500 | 30 | 2.7 | 15 | 12 - 18 | 0.2 | 0.1 - 0.4 | | | lever C 150 30 2.7 155 115 - 200 7 3 - 16 | lever B | | 210 | 30 | 2.7 | 80 | 60 - 100 | 2.7 | 1.1 - 5.6 | | | | lever C | /No AI, /AI BS | 150 | 30 | 2.7 | 155 | 115 - 200 | 7 | 3 - 16 | | | | lever D | | 100 | 50 | 2.7 | 350 | 250 - 465 | | 17 - 90 | | #### **APPLICATION** Phase imaging is among the AFM techniques that can be used to determine nanoscale differences in the properties of a heterogeneous system or of samples with inherent heterogeneity. Phase contrast is dependent on interactions between the tip and the sample, but those interactions are in turn partially dependent on the scan parameters and whether the image is being taken in an attractive or repulsive mode. O'Dea and Burrato used phase imaging to map the proton-conducting domains of a Nafion membrane. They found that the specific interaction forces between the tip and the sample significantly affected the resolution of the proton conducting domains. Imaging in a repulsive regime resulted in an overestimation of the area of the domains and an underestimation in the number of domains. Imaging in an attractive regime resulted in the most accurate phase imaging of the agueous and fluorocarbon domains of the membrane. When the feedback loop was not optimized or the cantilever was driven above resonance, the phase corresponded with changes in topography rather than changes in the composition of the sample. In figures (a) and (b) the phase data from repulsive and attractive regimes, respectively, have been overlaid on the corresponding topography image. Features of the phase contrast in the repulsive regime correspond to some features in the topography, while the phase contrast in the attractive regime is independent of the topography. Images were taken with the NSC15/AI BS (now upgraded to HQ:NSC15/AI BS). (O'Dea, J.R. and Burrato, S.K.; J. Phys. Chem. B 2011, 115, 1014-1020.) ^{*} Please refer to our price list for available package sizes. * See specifications on page 5 # Hi'Res-C # TIP ## **High Resolution silicon probes** SEM image of the Hi'Res-C spike The Hi'Res-C probes* suffer less contamination than silicon probes and are capable of obtaining many high-resolution scans, although they do require special care in use. Due to the small tip curvature radius, the tip-sample attraction force is minimized. Advantages of Hi'Res-C are noticeable when scanning small areas (< 250 nm) and flat samples ($R_s < 20$ nm). On larger images, the resolution is similar to that of General Purpose probes. | Spike radius < 1 nm | Overall coating: | |-----------------------------|---------------------------------------| | Spike height | Au overall coating 30 nm | | Spike material diamond-like | Cr overall sublayer 20 nm | | | The coating does not cover the spike! | | Cantilever
Series | Available
Coatings | Length
I, ± 5 μm | Width
w, ±3 μm | Thickness
±0.5 μm | | e Frequency
KHz
(range) | | Constant
N/m
(range) |
----------------------|-----------------------|----------------------------|--------------------------|----------------------|-----|-------------------------------|-----|----------------------------| | ■ ▼ | ▼ | ▼ | ▼ | • | ▼ | ▼ | ▼ | ▼ | | Hi'Res-C14 | /Cr-Au | 125 | 25 | 2.1 | 160 | 110 - 220 | 5.0 | 1.8 - 13 | | Hi'Res-C15 | /Cr-Au | 125 | 30 | 4.0 | 325 | 265 - 410 | 40 | 20 - 80 | | Hi'Res-C18 | /Cr-Au | 225 | 27.5 | 3.0 | 75 | 60 - 90 | 2.8 | 1.2 - 5.5 | | Hi'Res-C19** | /Cr-Au | 125 | 22.5 | 1.0 | 65 | 25 - 120 | 0.5 | 0.05 - 2.3 | * See specifications on page 5 **ScanAsyst® compatible - ScanAsyst® is a trade mark of Bruker Corp. ## **APPLICATION** The advantages of the Hi'Res-C probes are noticeable on scans less than 250 nm in size. The tip radius of 1 nm allows high resolution imaging of nanometer-sized objects like single molecules, ultrathin films, and porous materials in air. (a) Height image of polydiacetylene crystal obtained with Dimension 5000 SPM microscope and Hi'Res-C probe. Scan size 15 nm. A single defect in the molecular lattice of PDA crystal is visible. (b) Height image of PDA crystal obtained with Agilent 5500 SPM microscope and Hi'Res-C14 probe. Scan size 23 nm. Molecular lattice of PDA is observed only. Images courtesy of Dr. S. Magonov, Agilent Technologies. | DART MIMPER | 11'/D C / C A | 14, 15, 19 | series | |-------------|----------------------------|------------|----------| | PART NUMBER | Hi'Res - C * / Cr-Au - * — | 5 | quantity | # **Series HARD** # HARD ## Hardened DLC coated silicon probes SEM image of the HARD tip The HARD series silicon etched probe* tips have pyramidal shape. The probes are coated with a hard DLC film. The Back side of the cantilevers is coated with the 30 nm aluminium reflective film. | Typical tip radius | | | | | < 20 nm | |--------------------|--|--|--|--|------------| | Tip side coating | | | | | DLC 20 nm | | Back side coating | | | | | . Al 30 nm | | Cantilever
Series | Available
Coatings | Length | Width | Thickness | | e Frequency | | Force Constant | | |----------------------|-----------------------|-----------|-------------------|-----------|-----------|-------------|-----------|----------------|--| | Series | Coatings | l, ± 5 μm | w, $\pm 3 \mu m$ | ±0.5 μm | | Hz | | N/m | | | | | | | | (typical) | (range) | (typical) | (range) | | | ⊥ ▼ | ▼ | ▼ | ▼ | ▼ | ▼ | ▼ | ▼ | ▼ | | | HQ:NSC14 | /Hard/AI BS | 125 | 25 | 2.1 | 160 | 110 - 220 | 5.0 | 1.8 - 13 | | | HQ:NSC15 | /Hard/Al BS | 125 | 30 | 4.0 | 325 | 265 - 410 | 40 | 20 - 80 | | | HQ:NSC16 | /Hard/Al BS | 225 | 37.5 | 7.0 | 190 | 170 - 210 | 45 | 30 - 70 | | | HQ:CSC17 | /Hard/AI BS | 450 | 50 | 2.0 | 13 | 10 - 17 | 0.18 | 0.06 - 0.40 | | | HQ:NSC18 | /Hard/AI BS | 225 | 27.5 | 27.5 | 75 | 60 - 90 | 2.8 | 1.2 - 5.50 | | | MI | | | | | | | | | | | HQ:NSC35 | | | | | | | | | | | lever A | /Hard/AI BS | 110 | 35 | 2.0 | 205 | 130 - 290 | 8.9 | 2.7 - 24 | | | lever B | | 90 | 35 | 2.0 | 300 | 185 - 430 | 16 | 4.8 - 44 | | | lever C | | 130 | 35 | 2.0 | 150 | 95 - 205 | 5.4 | 1.7 - 14 | | | HQ:NSC36 | | | | | | | | | | | lever A | /Hard/AI BS | 110 | 32.5 | 1.0 | 90 | 30 - 160 | 1.0 | 0.1 - 4.6 | | | lever B | | 90 | 32.5 | 1.0 | 130 | 45 - 240 | 2 | 0.2 - 9 | | | lever C | | 130 | 32.5 | 1.0 | 65 | 25 - 115 | 0.6 | 0.06 - 2.7 | | | 4× | | | | | | | | | | | HQ:XSC11 | | | | | | | | | | | lever A | /Hard/Al BS | 500 | 30 | 2.7 | 15 | 12 - 18 | 0.2 | 0.1 - 0.4 | | | lever B | / India/ AI DS | 210 | 30 | 2.7 | 80 | 60 - 100 | 2.7 | 1.1 - 5.6 | | | lever C | | 150 | 30 | 2.7 | 155 | 115 - 200 | 7 | 3 - 16 | | | lever D | | 100 | 50 | 2.7 | 350 | 250 - 465 | 42 | 17 - 90 | | * See specifications on page 5 ### **APPLICATION** The wear-resistant diamond-like carbon (DLC) coating increases tip durability and lifetime. DLC coated probes are useful for scanning large areas and very hard materials. | | | N, X, C | type | |-------------|---|--------------------------------|----------| | PART NUMBER | HQ: * SC * / Hard / Al BS - * — | 15, 50 | quantity | | | | 11, 14, 15, 16, 17, 18, 35, 36 | series | # Pt and Cr-Au Coated **Force Constant** ## Conductive Noncontact (NSC), Contact (CSC) and 4 - Lever (XSC) silicon probes SEM image of the conducting Cantilever 10 Pyramidal silicon etched probes* with conductive platinum or gold coatings are suitable for a wide range of electrical applications of AFM. Gold and platinum coatings are inert, which makes these probes applicable for many experiments in biology and chemistry. Pt coated resulting tip radius . . . < 30 nm Cr-Au coated resulting tip radius < 35 nm Pt overall coating. 30 nm Au overall coating 30 nm Cr overall sublayer 20 nm Resonance Frequency 60 - 100 115 - 200 250 - 465 1.1 - 5.6 3 - 16 17 - 90 | Series | Coatings | $l,\pm 5~\mu m$ | $w,\pm 3~\mu m$ | ±0.5 µm | ŀ | Hz | N/m | | | |------------|-------------|-----------------|-----------------|---------|-----------|----------------------|---------------------|---------------------|--| | | | | | | (typical) | (range) | (typical) | (range) | | | ■ ▼ | ▼ | • | • | • | • | ▼ | ▼ | • | | | HQ:NSC14 | /Cr-Au, /Pt | 125 | 25 | 2.1 | 160 | 110 - 220 | 5.0 | 1.8 - 13 | | | HQ:NSC15 | /Cr-Au, /Pt | 125 | 30 | 4.0 | 325 | 265 - 410 | 40 | 20 - 80 | | | HQ:NSC16 | /Cr-Au, | 225 | 37.5 | 7.0 | 190 | 170 - 210 | 45 | 30 - 70 | | | HQ:CSC17 | /Cr-Au, /Pt | 450 | 50 | 2.0 | 13 | 10 - 17 | 0.18 | 0.06 - 0.40 | | | HQ:NSC18 | /Cr-Au, /Pt | 225 | 27.5 | 3.0 | 75 | 60 - 90 | 2.8 | 1.2 - 5.5 | | | HQ:NSC19** | /Cr-Au | 125 | 22.5 | 1.0 | 65 | 25 - 120 | 0.5 | 0.05 - 2.3 | | | 1.1 | | | | | **ScanAsy | st® compatible - Sca | ınAsyst® is a trade | mark of Bruker Corp | | | HQ:NSC35 | | | | | | | | | | | lever A | | 110 | 35 | 2.0 | 205 | 130 - 290 | 8.9 | 2.7 - 24 | | | lever B | /Cr-Au, /Pt | 90 | 35 | 2.0 | 300 | 185 - 430 | 16 | 4.8 - 44 | | | lever C | | 130 | 35 | 2.0 | 150 | 95 - 205 | 5.4 | 1.7 - 14 | | | HQ:NSC36 | | | | | | | | | | | lever A | | 110 | 32.5 | 1.0 | 90 | 30 - 160 | 1.0 | 0.1 - 4.6 | | | lever B | /Cr-Au, /Pt | 90 | 32.5 | 1.0 | 130 | 45 - 240 | 2 | 0.2 - 9 | | | lever C | | 130 | 32.5 | 1.0 | 65 | 25 - 115 | 0.6 | 0.06 - 2.7 | | | | | | | | | | | | | | HQ:CSC37 | | | | | | | | | | | lever A | | 250 | 35 | 2.0 | 40 | 30 - 55 | 0.8 | 0.3 - 2 | | | lever B | /Cr-Au, /Pt | 350 | 35 | 2.0 | 20 | 15 - 30 | 0.3 | 0.1 - 0.6 | | | lever C | | 300 | 35 | 2.0 | 30 | 20 - 40 | 0.4 | 0.1 - 1 | | | HQ:CSC38 | | | | | | | | | | | lever A | | 250 | 32.5 | 1.0 | 20 | 8 - 32 | 0.09 | 0.01 - 0.36 | | | lever B | /Cr-Au | 350 | 32.5 | 1.0 | 10 | 5 - 17 | 0.03 | 0.003 - 0.13 | | | lever C | | 300 | 32.5 | 1.0 | 14 | 6 - 23 | 0.05 | 0.005 - 0.21 | | | 4x | | | | | | | | | | | HQ:XSC11 | | | | | | | | | | | lever A | | 500 | 30 | 2.7 | 15 | 12 - 18 | 0.2 | 0.1 - 0.4 | | | | | | | | | | | | | 2.7 155 150 #### **APPLICATION** AFM is capable of mapping different electric properties of materials to topography images. These data can be used for analysis of the structure and composition of heterogeneous samples as well as for quantitative characterization of individual grains or defects on the surface. Electric properties of a sample can be mapped using probes with conducting coatings, when AC or DC bias is applied between the tip and the sample. Contact mode or two-pass operation techniques can be used for this purpose. Although traditional piezoelectric and ferroelectric materials are often the samples studied using piezoresponse force microscopy, Minary-Jolandan and Yu showed that the electromechanical properties of collagen fibrils can also be investigated with PFM. They found via high resolution PFM with a Pt coated CSC17 probe (now upgraded to HO:CSC17/ Pt) that collagen fibrils have piezoelectrically heterogeneous gap and overlap regions. The gap regions exhibit little to no piezoelectricity, while the overlap regions show piezoelectricity. Images (a) and (d) show the topography of the collagen fibril, while (b) and (e) show the PFM amplitude. (c) and (f) are the 2ω signal measured to rule out any electrostatic interference with the PFM signal. The Pt only coating on the CSC17 probe (now upgraded to HQ:CSC17/Pt) allowed for the resolution of features ~30 nm. (Minary-Jolandan, M. and Yu, M.-F.; ACS Nano 2009, 3, 1859-1863.) | | | N, C, X | type | |-------------|--------------------|--|----------| | | Wa 66 / | 11, 14, 15, 16, 17, 18, 19, 35, 36, 37, 38 | series | | PART NUMBER | HQ: * SC * / * - * | 15, 50, 100 | quantity | | | | /Cr-Au, /Pt | coating | * See specifications on page 5 11 # **DPER** ## **High Resolution Conductive silicon probes** SEM image of the DPER silicon tip DPER probes* are made by depositing a thin platinum coating on silicon tips. While the thickness of the coating on a flat cantilever surface is about 15 nm, there is only a 10 nm increase in the tip dimensions compared to bare silicon probes. These probes are recommended for electrical applications requiring higher resolution. Pt coated resulting tip radius . . . < 20 nm Pt overall coating. 15 nm | Cantilever
Series | Length I, ± 5 μm | Width
w, ± 3 μm | Thickness
±0.5 μm | | e Frequency
Hz
(range) | | Constant
N/m
(range) | | |----------------------|-------------------------|---------------------------|----------------------|-----|------------------------------|-----|----------------------------|--| | 4x ■ ▼ | • | • | • | • | ▼ | • | ▼ | | | HQ:DPER-XSC11 | | | | | | | | | | lever A | 500 | 30 | 2.7 | 15 | 12 - 18 | 0.2 | 0.1 - 0.4 | | | lever B | 210 | 30 | 2.7 | 80 | 60 - 100 | 2.7 | 1.1 - 5.6 | | | lever C | 150 | 30 | 2.7 | 155 | 115 - 200 | 7 | 3 - 16 | | | lever D | 100 | 50 | 2.7 | 350 | 250 - 465 | 42 | 17 - 90 | | ^{*} See specifications on page 5 # **DPE** ##
Low Noise Conductive silicon probes SEM image of the DPE silicon tip The DPE probes* feature silicon tips and a special structure of conductive layers, which provides a more stable electrical signal and less noise. However, some reduction in resolution for topography images is possible when using DPE probes due to the increased tip radius. Pt coated resulting tip radius . . . < 40 nm Pt overall coating. 50 nm | Cantilever | Length | Width | Thickness | Resonanc | e Frequency | Force Constant | | | |-----------------------|-----------------|-----------------|-----------|-----------|-------------|----------------|-----------|--| | Series | I, $\pm5~\mu m$ | $w,\pm 3~\mu m$ | ±0.5 μm | ŀ | кHz | N/m | | | | | | | | (typical) | (range) | (typical) | (range) | | | 4 x ■ ▼ | • | • | • | • | ▼ | • | ▼ | | | HQ:DPE-XSC11 | | | | | | | | | | lever A | 500 | 30 | 2.7 | 15 | 12 - 18 | 0.2 | 0.1 - 0.4 | | | lever B | 210 | 30 | 2.7 | 80 | 60 - 100 | 2.7 | 1.1 - 5.6 | | | lever C | 150 | 30 | 2.7 | 155 | 115 - 200 | 7 | 3 - 16 | | | lever D | 100 | 50 | 2.7 | 350 | 250 - 465 | 42 | 17 - 90 | | ^{*} See specifications on page 5 #### **APPLICATION** Topography (a) and in-plane piezoelectric force response (b) images of an approximately 80 nm thick BiFeO, film grown on a LaAlO, substrate taken with a DPER18 probe (now replaced by HQ:DPE-XSC11). Image courtesy of Zuhuang Chen, Nanyang Technological University. #### **APPLICATION** DPE probe topography (a) and surface potential (b) images of a fluoroalkane $(F_{12}H_{20})$ on a Silicon substrate. Image was taken using single-pass KFM with an Agilent 5500 by S. Magonov. PART NUMBER **HQ: DPER - XSC11 - *-** 15, 50, 100 quantity **PART NUMBER** **HQ: DPE - XSC11 - *** 15, 50, 100 quantity 12 13 # **Co-Cr Coated** ## Magnetic Noncontact (NSC) silicon probes SEM image of the magnetic silicon tip Two HQ:NSC probe* models are available with a special coating for Magnetic Force Microscopy. The coating consists of a 60 nm cobalt layer on the tip side and is protected from oxidation with a 20 nm chromium film. The cantilever parameters are optimized for stable measurements of topography and magnetic properties. | Co-Cr coated tip radius < 60 nm | Back side Al coating 30 nm | |---------------------------------|----------------------------| | Co tip side coating 60 nm | | | Cr tip side coating 20 nm | Coercivity 300-400 Oe | | Cantilever | Available | Length | Width | Thickness | Resonanc | e Frequency | Force Constant | | | | |------------|--------------|--------------------|-----------------|-----------|-----------|-------------|----------------|------------|--|--| | Series | Coatings | I, \pm 5 μm | $w,\pm 3~\mu m$ | ±0.5 µm | k | .Hz | | N/m | | | | | | | | | (typical) | (range) | (typical) | (range) | | | | ■ ▼ | ▼ | ▼ | ▼ | ▼ | ▼ | ▼ | ▼ | ▼ | | | | HQ:NSC18 | /Co-Cr/Al BS | 225 | 27.5 | 3.0 | 75 | 60 - 90 | 2.8 | 1.2 - 5.5 | | | | III | | | | | | | | | | | | HQ:NSC36 | | | | | | | | | | | | lever A | | 110 | 32.5 | 1.0 | 90 | 30 - 160 | 1.0 | 0.1 - 4.6 | | | | lever B | /Co-Cr/AI BS | 90 | 32.5 | 1.0 | 130 | 45 - 240 | 2 | 0.2 - 9 | | | | lever C | | 130 | 32.5 | 1.0 | 65 | 25 - 115 | 0.6 | 0.06 - 2.7 | | | * See specifications on page 5 ## **APPLICATION** Topography (a) and magnetic (b) images of a Co mono domain particle obtained in Lift Mode using a NSC36 series cantilever with Co-Cr coating (now upgraded to HO:NSC36/Co-Cr/AI BS). Image courtesy of Prof. V. Shevyakov, MIET. #### series HQ: NSC * / Co-Cr / Al BS - * **PART NUMBER** quantity # **Silicon Nitride Probes** ## **Silicon Nitride Probes** SEM image of a XNC12 Cantilever Probes of the 12 series have 2 silicon nitride cantilevers and tips on each side of the glass holder chip. They are used for soft contact mode applications. | Tip side coating: Cr-Au BS none Cr-Au | Back side coating:Cr-Au BS70 nm, Au on CrCr-Au70 nm, Au on Cr | |--|---| | Cr-Au BS uncoated tip radius ~ 10 nm Cr-Au coated tip radius ~ 30 nm | | | Cantilever | Available | Length | Width | Thickness | Resonanc | e Frequency | Force Constant | | | | |---------------|------------------|---------------------|--------------------|------------------|-----------|-------------|----------------|---------|--|--| | Series | Coatings | l, \pm 10 μm | w, \pm 5 μm | $\pm0.075~\mu m$ | k | кHz | 1 | V/m | | | | | | | | | (typical) | (range) | (typical) | (range) | | | | 4 ×∧ ▼ | ▼ | • | • | • | • | ▼ | • | • | | | | XNC12 | | | | | | | | | | | | lever A | Cr-Au / Cr-Au BS | 200 | 28 | 0.5 | 17 | - | 0.08 | - | | | | lever B | CI-AU/ CI-AU DO | 100 | 13.5 | 0.5 | 67 | - | 0.32 | - | | | # **Tipless Cantilevers** ## Tipless Noncontact (NSC) and Contact (CSC) three-lever silicon probes Probes of the Tipless Series feature 3 tipless cantilevers* with different spring constants and resonance frequencies on one side of the chip. This series replaces the former 12 Series. | Back side coating: | Cr-Au coated | | | | | | |--------------------|---------------------------|--|--|--|--|--| | AI BS AI 30 nm | Au overall coating | | | | | | | no Al | Cr overall sublayer 20 nm | | | | | | SEM image of a tipless silicon cantilever | Cantilever
Series | Available | Length | Width | Thickness | | Resonance Frequency | | Constant | |----------------------|------------------------|-----------|-----------|-----------|-----------|---------------------|-----------|----------------| | Series | Coatings | l, ± 5 μm | w, ± 3 μm | ±0.5 µm | | Hz
(rongo) | | N/m
(ranga) | | | | | | | (typical) | (range) | (typical) | (range) | | ▼ | ▼ | • | • | • | ▼ | ▼ | ▼ | • | | HQ:NSC35/Tiple: | SS | | | | | | | | | lever A | | 110 | 35 | 2.0 | 205 | 130 - 290 | 8.9 | 2.7 - 24 | | lever B | /No AI, /AI BS, /Cr-Au | 90 | 35 | 2.0 | 300 | 185 - 430 | 16 | 4.8 - 44 | | lever C | | 130 | 35 | 2.0 | 150 | 95 - 205 | 5.4 | 1.7 - 14 | | HQ:NSC36/Tipless | 3 | | | | | | | | | lever A | | 110 | 32.5 | 1.0 | 90 | 30 - 160 | 1.0 | 0.1 - 4.6 | | lever B | /No AI, /AI BS, /Cr-Au | 90 | 32.5 | 1.0 | 130 | 45 - 240 | 2 | 0.2 - 9 | | lever C | | 130 | 32.5 | 1.0 | 65 | 25 - 115 | 0.6 | 0.06 - 2.7 | | ПT | | | | | | | | | | HQ:CSC37/Tipless | 3 | | | | | | | | | lever A | | 250 | 35 | 2.0 | 40 | 30 - 55 | 0.8 | 0.3 - 2 | | lever B | /No Al, /Al BS, /Cr-Au | 350 | 35 | 2.0 | 20 | 15 - 30 | 0.3 | 0.1 - 0.6 | | lever C | | 300 | 35 | 2.0 | 30 | 20 - 40 | 0.4 | 0.1 - 1 | | HQ:CSC38/Tipless | S | | | | | | | | | lever A | | 250 | 32.5 | 1.0 | 20 | 8 - 32 | 0.09 | 0.01 - 0.36 | | lever B | /No AI, /AI BS, /Cr-Au | 350 | 32.5 | 1.0 | 10 | 5 - 17 | 0.03 | 0.003 - 0.13 | | lever C | | 300 | 32.5 | 1.0 | 14 | 6 - 23 | 0.05 | 0.005 - 0.21 | * See specifications on page 5 #### **APPLICATION** Tipless cantilevers can be used for measurements of material properties and interactions. Different objects such as glass spheres or polystyrene particles can also be mounted on tipless cantilevers to make them applicable for AFM-like experiments. ^{*} Please refer to our price list for available package sizes. Mix and Match enables you to create a custom MikroMasch® AFM probes box with quantities of 100, 150, 200, 250, 300, 350 or 400 pcs. inside where you can mix different MikroMasch® AFM probe types in units of 50 pcs. The more units of 50 AFM probes you order, the higher your discount will be from the 50 probes list prices of each variety ordered: YOU CAN CREATE YOUR OWN MIKROMASCH® BOX USING THE FORM ON OUR WEBSITE. WE WILL SHIP YOUR PERSONAL MIX AND MATCH BOX WITHIN 10 BUSINESS DAYS. 16 # **TGXYZ Series** SEM image of a TGXYZ02 grating Calibration gratings from the TGXYZ series are arrays of different structures comprising rectangular silicon dioxide steps on a silicon wafer. The small square in the center with dimensions $500\,\mu m$ by $500\,\mu m$ includes circular pillars and holes, as well as lines in the X- and Y-direction with a pitch of $5\,\mu m$. The large square with dimensions 1 mm by 1 mm contains square pillars and holes with a pitch of $10\,\mu m$. | Active area | | | | | | | 1 x 1 mm | |-------------------|--|--|--|--|--|--|-------------| | Chip dimensions . | | | | | | | .5x5x0.3 mm | | Part number | Step | Height | Pitch | Pitch | |-------------|---------|----------|-------------|----------| | | height* | accuracy | | accuracy | | ▼ | ▼ | ▼ | ▼ | ▼ | | TGXYZ01 | 20 nm | 2% | 5 and 10 µm | 0.1 µm | | TGXYZ02 | 100 nm | 3% | 5 and 10 µm | 0.1 μm | | TGXYZ03 | 500 nm | 3% | 5 and 10 µm | 0.1 µm | | | | | | | #### **APPLICATION** The TGXYZ calibration gratings are intended for vertical and lateral calibration of SPM scanners. The vertical non-linearity can be compensated for by using several calibration gratings with different nominal step heights. # **TGX Series** SEM image of a TGX01 grating The silicon calibration grating TGX is an array of square holes with sharp undercut edges formed by anisotropic etching along the (111) crystallographic planes of silicon. The typical radius of the edges is less than 5 nm. | Part number | |---| | Active area | | Chip dimensions 5 x 5 x | | Edge radii | | Pitch | | Pitch accuracy 0.1 μm | | Step height* 1 µm | | The dimensions marked * are given for reference only. | TGX calibration gratings are intended for determination of the tip aspect ratio and for lateral calibration of SPM scanners. The gratings can also be used for detection of lateral non-linearity, hysteresis, creep, and cross-coupling effects. # **TGF11 Series** SEM image of a TGF11 grating The TGF calibration gratings feature one-dimensional arrays of trapezoidal steps etched into a silicon substrate. The sidewalls of the structures are very smooth and planar surfaces with well-defined orientation formed by the (111) crystallographic planes in monocrystalline
silicon. The sidewalls and the horizontal top surfaces form an angle of 54.74°. | Part number | | |-----------------------|--------------| | Active area | step height* | | calibration purposes. | | #### **APPLICATION** TGF11 grating can be used for the assessment of scanner nonlinearity in the vertical direction. Direct calibration of the lateral force can be obtained by analyzing the contact response measured on the flat and sloped facets. This can be done for the calibration of conventional Si probes or cantilevers with an attached colloidal particle with any radius of curvature up to 2 µm. # **PA Series** SEM image of a PA01 structure Scan size 1 µm Sample for characterization of tip shape with hard sharp pyramidal nanostructures. The structures are covered by a highly wear-resistant layer. | Part number | | |---------------------|--| | Pyramid base | | | Pyramid height | | | Smallest edge radii | | | Active area | | | Chip dimensions | | | | | #### **APPLICATION** The exact shape of the scanning probe tip is very important for obtaining AFM images of high quality and accuracy. As new AFM tips with nanometer radii of curvature become widespread, periodic structures that have surface features of similar or greater sharpness should be used to estimate the parameters of the tip. Please note: The TGXYZ, TGX, TGF11, and PA Series Calibration Gratings are available either mounted on a round metal plate with Ø12mm or unmounted. For ordering information visit www.spmtips.com Please note: The TGXYZ, TGX, TGF11, and PA Series Calibration Gratings are available either mounted on a round metal plate with Ø12mm or unmounted. For ordering information visit www.spmtips.com # **HOPG** Typical STM image of HOPG with superimposed graphene structure Highly ordered pyrolytic graphite (HOPG) is a lamellar material and consists of stacked planes. Carbon atoms within a single plane interact more strongly than with those in adjacent planes. Each atom within a plane has three nearest neighbors, resulting in a honeycomb-like structure. This two-dimensional single-atom thick plane is called graphene. | Part number: | | | | |---------------------|----------------------|-------------------|---| | HOPG/ZYA/DS/1-1 | | | 10 x 10 x 1 mm, 1 chip | | HOPG/ZYA/DS/2-1 | 1 | | $10 \times 10 \times 2$ mm, 1 chip | | HOPG/ZYB/DS/1-1 | l | | 10 x 10 x 1 mm, 1 chip | | HOPG/ZYB/DS/2-2 | 1 | | $10 \times 10 \times 2$ mm, 1 chip | | HOPG/ZYH/DS/1-1 | 1 | | 10 x 10 x 1 mm, 1 chip | | HOPG/ZYH/DS/2-2 | 1 | | $10 \times 10 \times 2$ mm, 1 chip | | HOPG/ZYH/DS/1-5 | 5 | | 10 x 10 x 1 mm, 5 chips | | HOPG/ZYH/DS/2- | 5 | | 10 x 10 x 2 mm, 5 chips | | Density | | | 2.266 g/cm ³ | | Thermal conductiv | vities: | | | | thermal conductivi | ty parallel (002) . | | 1700 \pm 100 W/(m·K) | | thermal conductivi | ty perpendicular (0 | 02) | 8 \pm 1 W/(m·K) | | electrical conducti | vity parallel (002) | | $2.1 \pm 0.1 \times 10^6 [(\Omega \cdot m)^{-1}]$ | | electrical conducti | vity perpendicular (| 002) | $5 \times 10^2 \left[(\Omega \cdot \text{m})^{-1} \right]$ | | There are several g | rades of single - or | double sided HOPG | with thickness 1 mm or more: | | | ZYA Grades | ZYB Grades | ZYH Grades | | Mosaic spread | 0.4°± 0.1° | 0.8°±0.2° | 3.5°± 1.5° | | | | | | #### **APPLICATION** HOPG terminated with a graphene layer can serve as an ideal atomically flat surface to be used as a substrate or standard for SPM investigations. This is also an easily "cleavable" material with a smooth surface, which is vital for SPM measurements that require a uniform, flat and clean substrate. #### **PLEASE NOTE** The TGXYZ, TGX, TGF11, and PA Series Calibration Gratings are available either mounted on a round metal plate with Ø12mm or unmounted. For ordering information visit www.spmtips.com | • | • | | | | 3 | |---|---|---|---|---|---|---|---|---|---|----|----|---|----|---|---|----|---|----|----|---|---|---|---|---|---|---|---|--|------|---|---|---|---|----|----|----|------|---|---|---|---|----|---|--|---| | 1 | Ń | 1 | • | ١ | ٠ | ١ | ١ | ٠ | ١ | ٠ | ١ | ٠ | ٠ | ١ | ١ | ٠ | ١ | ٠ | ١ | ٠ | ۰ | | • | ۰ | ۰ | ۰ | | • | | | | 1 | ٠ | ٠ | ٠ | ٠ | ١ | | | ١ | ٠ | ٠ | ١ | ١ | | • | | ٠ | | ŀ | | | | | | · | · |
 | | | | | · | | |
 | | | ŀ | | | | | | | | į | ì | | | | | | į |
 | | | | | ì | | ì |
 | ì | | ì | | | ŀ | | ì | ١ | ١ | ١ | • | • | | Ì | • | ١ | • | ١ | ١ | ٠ | ١ | ١ | ١ | ١ | ١ | ١ | ٠ | ١ | | | | | | | | | | | 1 | • | • | ١ | ٠ | 1 | | Ì | • | • | • | ١ | ١ | | • | | | ÷ | ŀ | | | | | | · | | ÷ | | | | | | ÷ | | | | | | | | | | | | |
 | | | | | | | ÷ |
 | | | ÷ | ٠ | | | | | | | | | | | | | | ì |
 | | | | | ì | | ì |
 | ì | | ì | • | Ì | | | • | ĺ | | | Ì | • | | • | • | | | | | | | • | | • | | | | | | | | | | ĺ | | • | • | • | | | ĺ | | | • | | | | | | ۰ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ŀ | ٠ | ٠ | ٠ | | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | | | | | | | | | |
 | ٠ | ٠ | ٠ | | ٠ | ٠ | ٠ |
 | ì | ٠ | ٠ | ٠ | ٠ | ٠ | | ٠ | | ٠ | | · |
 | | | | | | | |
 | | | ŀ | | | | | | | | į | | | | | | ì | į | | | ŀ | | | | | | | | | | | | | | | | | |
 | | | | | ì | | ì |
 | ì | | | | | ŀ | | ì | ١ | • | ١ | ٠ | • | | | • | • | ٠ | ۰ | • | ٠ | ١ | ١ | ٠ | ٠ | ٠ | ١ | ٠ | • | | | • | | • | • | | | | ٠ | ٠ | ٠ | • | ٠ | ۰ | ۰ | | | • | • | • | ١ | | | 1 | | ۰ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ÷ | ٠ | ٠ | ٠ | ٠ | ŀ | ŀ | ٠ | ٠ | ٠ | ŀ | ٠ | ٠ | | | ٠ | ٠ | ٠ | | | | | | | ٠ | ٠ | ٠ | ٠ | ÷ |
 | ŀ | ٠ | ٠ | | ŀ | ÷ | | ٠ | | | ì |
 | | | | | | | |
 |
 | • | | | | | | | | | | | | ĺ | | • | | • | | | ĺ | | | | | | | | | ٠ | ٠ | ۱ | ٠ | ٠ | • | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ۰ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | | | | | | | | | |
 | ٠ | ٠ | • | ٠ | ٠ | ٠ | ٠ |
 | ٠ | ٠ | 1 | ٠ | ۰ | ٠ | | • | | ٠ | | ŀ | | | | | | · | · |
 | | | | | · | | |
 | | | ŀ | | | | | | | | | ì | | | | | | | ì |
 | | | | | | | |
 | | | ì | | | | | ÷ | ٠ | | ٠ | ٠ | ٠ | 4 | ٠ | ٠ | 1 | ٠ | ٠. | ٠. | ٠ | ٠. | ٠ | ٠ | ٠. | ٠ | ٠. | ٠. | | | | | | | | | | | | | 4 | ٠ | ٠. | ٠. | ٠. | | | ٠ | 4 | ٠ | ٠. | | | | Notes 20 21 # RECOMMENDATIONS FOR SPECIFIC APPLICATIONS | | Droho Typo | Characteristics | Ic NL/pa | f l/Ll= | Tip Motorial Coating | D -0.00 | |------------------------------------|--------------------------------|--|-------------------------|----------------------|--|-----------------------| | | Probe Type | Characteristics | k, N/m | f _o , kHz | Tip Material, Coating | R _{tip} , nm | | Materials characterization | HQ:NSC18 | Force modulation | ~2.8 | ~75 | Silicon, Al or no Al
Back side coating | ~8 | | | HQ:NSC14 | Phase imaging | ~5.0 | ~150 | Silicon, Al or no Al
Back side coating | ~8 | | General topology imaging | HQ:NSC17 | Contact imaging | ~0.18 | ~13 | Silicon, Al or no Al
Back side coating | ~8 | | | HQ:NSC15 | Intermittent/non-contact
Imaging | ~40 | ~325 | Silicon, Al or no Al
Back side coating | ~8 | | | HQ:NSC14 | Intermittent contact imaging | ~5.0 | ~150 | Silicon, Al or no Al
Back side coating | ~8 | | | HQ:NSC19 | Intermittent contact imaging
/ ScanAsyst ® PeakForce
tapping™ * | ~0.5 | ~65 | Silicon, Al or no Al
Back side coating | ~8 | | Topology imaging for life science | HQ:NSC14 | Intermittent contact imaging | ~5.0 | ~150 | Silicon, Al or no Al
Back side coating | ~8 | | | HQ:NSC18/ Cr-Au BS | Intermittent contact imaging in fluid | ~2.8 | ~75 | Silicon, Au Back side coating | ~8 | | | HQ:NSC18/Cr-Au BS | Contact imaging in fluid | ~2.8 | ~75 | Silicon, Au Back side coating | ~8 | | | HQ:CSC17 | Contact imaging | ~0.18 | ~13 | Silicon, Al or no Al
Back side coating | ~8 | | | HQ:CSC38
(three lever) | Contactimaging | ~0.09
~0.03
~0.05 | ~20
~10
~14 | Silicon, Al or no Al
Back side coating | ~8 | | | Hi'Res-C14/Cr-Au | High resolution Imaging | ~5.0 | ~160 | Carbon spike, Al Back side coating | ~1 | | | HQ:NSC36
(three lever) | Intermittent contact imaging | ~1.0
~2.0
~0.6 | ~90
~130
~65 | Silicon, Al or no Al
Back side coating | ~8 | | | XNC12/Cr-Au BS
(four lever) | Soft contact mode imaging | ~0.08
~0.32 | ~17
~67 | Silicon Nitride, Au
Back side coating | <40 | | | XNC12/Cr-Au
(four lever) | Soft contact mode imaging | ~0.08
~0.32 | ~0.08
~0.32 | Cr-Au coating on both sides | <60 | | Probes for mechanical property | HQ:NSC14/Hard | Specially coated for durability | ~5.0 | ~160 | DLC coating, AI Back side coating | <20 | | measurements in life science | HQ:NSC18 | Force modulation | ~2.8 | ~75 | Silicon, Al or no Al
Back side coating | ~8 | | | HQ:CSC17/Cr-Au | Chemical inertness, functionalization | ~0.18 | ~13 | Cr-Au coating on both sides | <35 | | Probes for high resolution imaging |
Hi'Res-C14/Cr-Au | Nanometer-sized objects like
single molecules, ultrathin
films, and porous materials
in air | ~5.0 | ~160 | Carbon spike, Cr-Au
coating on both sides
(spike not coated) | ~1 | k – Force constant; f_0 – Resonance frequency | | Probe Type | Characteristics | <i>k</i> , N/m | f₀, kHz | Tip Material, Coating | R _{tip} , nm | |--|--------------------------------|---|----------------|---------|-------------------------------------|-----------------------| | Electrical applications in | HQ:DPER/XS11,
Cantilever A | High resolution | ~0.2 | ~15 | Pt coating on both sides | <20 | | vacuum | HQ:DPE/XSC11,
Cantilever A | High sensitivity, low wear | ~0.2 | ~15 | Pt coating on both sides | <40 | | Electrical applications for | HQ:DPER/XSC11,
Cantilever C | High resolution | ~7 | ~155 | Pt coating on both sides | <20 | | PFM, TUNA, SCM,
SSRM | HQ:DPE/XSC11,
Cantilever C | Dynamic/contact electrical mode, high sensitivity, low wear | ~7 | ~155 | Pt coating on both sides | <40 | | | HQ:CSC17/Cr-Au | Chemical inertness, functionalization | ~0.15 | ~12 | Cr-Au coating on both sides | <35 | | | HQ:NSC18/Pt | Dynamic/contact electrical mode | ~2.8 | ~75 | Pt coating on both sides | <30 | | Electrical applications for | HQ:DPER/XSC11,
Cantilever C | High resolution | ~7 | ~155 | Pt coating on both sides | <20 | | EFM, SKPM, Voltage
Modulation, Scan-
ning Impedance
Microscopy, SGM | HQ:DPE/XSC11,
Cantilever C | Dynamic/contact electrical mode, high sensitivity, low wear | ~7 | ~155 | Pt coating on both sides | <40 | | ••• | HQ:NSC14/Pt | General stability in conductive modes | ~7 | ~155 | Pt coating on both sides | <30 | | | HQ: NSC14/Cr-Au | Chemical inertness, functionalization | ~7 | ~155 | Cr-Au coating on both sides | <35 | | | HQ:DPER/XSC11,
Cantilever B | High resolution | ~2.7 | ~80 | Pt coating on both sides | <20 | | | HQ:DPE/XSC11,
Cantilever B | High sensitivity, low wear | ~2.7 | ~80 | Pt coating on both sides | <40 | | | HQ:NSC18/Pt | General stability in conductive modes | ~2.8 | ~75 | Pt coating on both sides | <30 | | | HQ:NSC18/Cr-Au | Chemical inertness, functionalization | ~2.8 | ~75 | Cr-Au coating on both sides | <35 | | Magnetic force microscopy | HQ:NSC18/Co-Cr/
AI BS | Magnetic coating | ~2.8 | ~75 | Co-Cr coating, Al Back side coating | <90 | k – Force constant; f_0 – Resonance frequency ^{*} ScanAsyst® and PeakForce Tapping $^{\rm TM}$ are trademarks of Bruker Corporation ## Contacts Toll Free (US): +1 866 SPMTIPS (776-8477) Phone (EU): +49 (0) 6441 2003561 Headquarters: +359 (0) 2 865-8629 E-mail: info@mikromasch.com sales@mikromasch.com www.mikromasch.com www.spmtips.com ## MikroMasch® Headquarters Innovative Solutions Bulgaria Ltd. 48, Joliot Curie Str. 1113 Sofia, Bulgaria phone: +359 2 865-8629 fax: +359 2 963-0732 info@mikromasch.com sales@mikromasch.com ## MikroMasch® Europe NanoAndMore GmbH Spilburg Bld. A1, Steinbühlstrasse 7 D-35578 Wetzlar, Germany phone: +49 (0) 6441 2003561 fax: +49 (0) 6441 2003562 europe@mikromasch.com ## MikroMasch® USA NanoAndMore USA Corp. 21 Brennan Street, Suite 10 Watsonville, CA 95076, USA Toll Free (US): +1 866 SPMTIPS (776-8477) phone: +1 831-536-5970 fax: +1 831-475-4264 usa@mikromasch.com