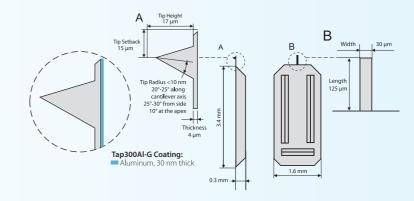
AFM Probes Catalogue

Quality meets Price

Index:

Silicon AFM Probes			Diamond-Like-Carbon AFM Probes		
Tapping Mode	Tap300-G / Tap300Al-G	p. 2	Tapping Mode	Tap300DLC	p. 22
Tapping Mode (Long Cantilever)	Tap190-G / Tap190Al-G	р. 3	Tapping Mode (Long Cantilever)	Tap190DLC	p. 23
Soft Tapping Mode	Tap150-G / Tap150Al-G	p. 4	Soft Tapping Mode	Tap150DLC	p. 24
Force Modulation Mode	Multi75-G / Multi75Al-G	p. 5	Force Modulation Mode	Multi75DLC	p. 25
Contact Mode	Contact-G / ContAl-G	p. 6	Contact Mode	ContDLC	p. 26
Conductive AFM Probes			Silicon Nitride AFM Probes	SiNi	p. 28
Tapping Mode	ElectriTap300-G	p. 8			
Tapping Mode (Long Cantilever)	ElectriTap190-G	p. 9	All In One - Silicon AFM Probes		
Soft Tapping Mode	ElectriTap150-G	p.10	AIO with 4 different cantilevers	All-In-One / All-In-OneAl	p. 31
Force Modulation Mode	ElectriMulti75-G	p.11	4 tipless cantilevers	Tipless-All-In-One / Tipless-All-In-OneAl	p. 32
Contact Mode	ElectriCont-G	p.12	4 conductive cantilevers	Electri-All-In-One	p. 33
			4 DLC coated cantilevers	All-In-One-DLC	p. 34
GOLD Series			4 diamond coated cantilevers	All-In-One-DD	p. 35
Tapping Mode and special applications	Tap300GD-G / Tap300GB-G	p. 14	4		
Tapping Mode (Long Cantilever) and special applications	Tap190GD-G / Tap190GB-G	p. 15	Mixed box of AFM Probes	BudgetComboBox	p. 36
Soft Tapping Mode and special applications	Tap150GD-G / Tap150GB-G	p. 16	Single Hi-Res AFM Probes	SHR300	p. 39
Force Modulation and special applications	Multi75GD-G / Multi75GB-G			SHR150	p. 40
Contact Mode and special applications	ContGD-G / ContGB-G	p. 18		SHR75	p. 41
			Calibration Standards		
Magnetic AFM Probes	Multi75M-G	p.20	AFM Tip Characterizer	TipCheck	p. 43
				HS-20MG / HS-100MG / HS-500MG	p. 44
			XYZ Calibration Nanogrid	CS-20NG	p. 45


Image Gallery Gallery of application images

Silicon AFM Probes

Tapping Mode

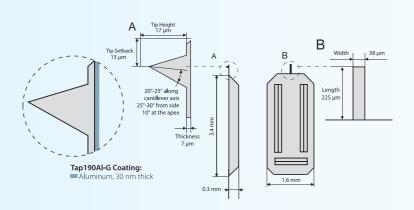
Tap300-G		Tap300Al-G	
☐① ﷺ Tap300-G-10	\$200	Tap300Al-G-10	\$210
50 ∰ Tap300-G-50	\$850	Tap300Al-G-50	\$890
\$\$0 \(\frac{\pi}{2} \) Tap300-G-380	\$3800	Tap300Al-G-380	\$3900

Technical Data:	VALUE	RANGE
Resonance Frequency	300 kHz	± 100 kHz
Force Constant	40 N/m	20 to 75 N/m
Length	125 μm	± 10 μm
Mean Width	30 μm	± 5 μm
Thickness	4 μm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	<10 nm	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	

Application: Tapping Mode, Intermittent Contact Mode

Coating: None (Tap300-G) or 30nm thick Aluminum reflex

coating (Tap300Al-G)


The **AFM Probe** is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 10 nm gives good resolution and reproducibility.

This probe uses an **"on scan angle"** symmetric tip to provide a more symmetric representation of features over 200 nm.

View image gallery for application images taken with this product!

The AFM Probe Holder Chip has alignment grooves on the backside and fits most commercial AFMs as it is industry standard size.

Tapping Mode

Tap190-G		Tap190Al-G	
10 g Tap190-G-10	\$200	Tap190Al-G-10	\$210
50 § Tap190-G-50	\$850	Tap190Al-G-50	\$890
B a Tap190-G-380	\$3800	Tap190Al-G-380	\$3900

Application: Tapping Mode, Intermittent Contact Mode

Coating: None (Tap190-G) or 30nm thick Aluminum reflex

coating (Tap190Al-G)

The **AFM Probe** is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 10 nm gives good resolution and reproducibility.

This probe uses an **"on scan angle"** symmetric tip to provide a more symmetric representation of features over 200 nm.

The AFM Probe Holder Chip has alignment grooves on the backside and fits most commercial AFMs as it is industry standard size.

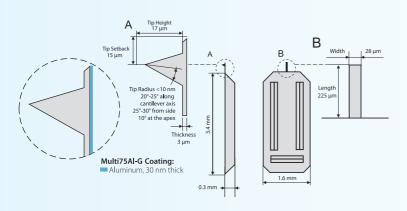
Technical Data:	VALUE	RANGE
Resonance Frequency	190 kHz	± 30 kHz
Force Constant	48 N/m	28 to 75 N/m
Length	225 μm	± 10 μm
Mean Width	38 μm	± 5 μm
Thickness	7 μm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	<10 nm	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	

Soft Tapping Mode

Tap150-G		Tap150Al-G	
10 € Tap150-G-10	\$200	Tap150Al-G-10	\$210
5 0 ∰ Tap150-G-50	\$850	Tap150Al-G-50	\$890
3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3	\$3800	Tap150Al-G-380	\$3900

Technical Data:	VALUE	RANGE
Resonance Frequency	150 kHz	± 75 kHz
Force Constant	5 N/m	1.5 to 15 N/m
Length	125 μm	± 10 μm
Mean Width	25 μm	± 5 μm
Thickness	2.1 μm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	<10 nm	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	

Application: Soft Tapping Mode, Intermittent Contact Mode


Coating: None (Tap150-G) or 30nm thick Aluminum reflex coating (Tap150Al-G)

The **AFM Probe** is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 10 nm gives good resolution and reproducibility.

This probe uses an **"on scan angle"** symmetric tip to provide a more symmetric representation of features over 200 nm.

The AFM Probe Holder Chip has alignment grooves on the backside and fits most commercial AFMs as it is industry standard size.

Force Modulation

Multi75-G		Multi75Al-G
10 § Multi75-G-10	\$200	Multi75Al-G-10 \$210
50 g Multi75-G-50	\$850	Multi75Al-G-50 \$890
B O Multi75-G-380	\$3800	Multi75Al-G-380 \$3900

Application: Force Modulation Mode, Light Tapping Mode,

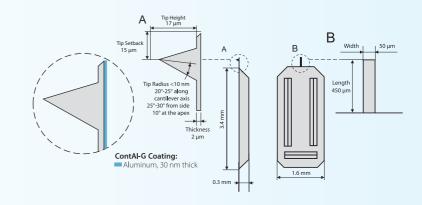
Pulsed Force Mode (PFM)

Coating: None (Multi75-G) or 30nm thick Aluminum reflex

coating (Multi75Al-G)

The **AFM Probe** is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 10 nm gives good resolution and reproducibility.

This probe uses an **"on scan angle"** symmetric tip to provide a more symmetric representation of features over 200 nm.


The AFM Probe Holder Chip has alignment grooves on the backside and fits most commercial AFMs as it is industry standard size.

Technical Data:	VALUE	RANGE
Resonance Frequency	75 kHz	± 15 kHz
Force Constant	3 N/m	1 to 7 N/m
Length	225 μm	± 10 μm
Mean Width	28 μm	± 5 μm
Thickness	3 μm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	<10 nm	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	

Contact Mode

Contact-G		ContAl-G	
10 g Contact-G-10	\$200	ContAl-G-10	\$210
50 g Contact-G-50	\$850	ContAl-G-50	\$890
SOO g Contact-G-380	\$3800	ContAl-G-380	\$3900

Technical Data:	VALUE	RANGE
Resonance Frequency	13 kHz	± 4 kHz
Force Constant	0.2 N/m	0.07 to 0.4 N/m
Length	450 μm	± 10 μm
Mean Width	50 μm	± 5 μm
Thickness	2 μm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	< 10 nm	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	

Application: Contact Mode

Coating: None (Cont-G) or 30nm thick Aluminum reflex

coating (ContAl-G)

The **AFM Probe** is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 10 nm gives good resolution and reproducibility.

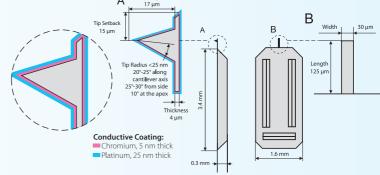
This probe uses an **"on scan angle"** symmetric tip to provide a more symmetric representation of features over 200 nm.

The AFM Probe Holder Chip has alignment grooves on the backside and fits most commercial AFMs as it is industry standard size.

ElectriTap300-G

10 g Tap300E-G-10 \$240

50 g Tap300E-G-10 \$1000


The AFM Probe is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 25 nm gives good resolution and reproducibility.

This probe uses an "on scan angle" symmetric tip to provide a more symmetric representation of features over 200 nm.

Conductive AFM Probes

The AFM Probe Holder Chip has alignment grooves on the backside and fits most commercial AFMs as it is industry standard size

Chip size: 3.4 x 1.6 x 0.3 mm

Application: Tapping, Intermittent Contact and electric modes such as:

- Scanning Capacitance Microscopy (SCM)
- Electrostatic Force Microscopy (EFM)
- Kelvin Probe Force Microscopy (KPFM)

Coating: Electrically conductive coating of 5 nm Chromium and 25 nm Platinum on both sides of the cantilever. This coating also enhances the laser reflectivity of the cantilever.

Technical Data: VALUE RANGE Resonance Frequency 300 kHz + 100 kHz Force Constant 40 N/m 20 to 75 N/m Length 125 um $\pm 10 \, \mu m$ Mean Width 30 um $\pm 5 \, \mu m$ Thickness 4 um ± 1 um Tip Height 17 um $\pm 2 \mu m$ Tip Setback 15 µm $\pm 5 \mu m$ Tip Radius <25 nm 20°-25° along cantilever axis Half Cone Angles 25°-30° from side 10° at the apex Contact Resistance 300 Ohm on Platinum thin film surface

ElectriTap190-G

Tap190E-G-10 \$240

50 g Tap190E-G-50 \$1000

Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 25 nm gives good resolution and reproducibility.

This probe uses an "on scan angle" symmetric tip to provide a more symmetric representation of features over 200 nm

The AFM Probe is micromachined, made of monolithic

The AFM Probe Holder Chip has alignment grooves on the backside and fits most commercial AFMs as it is industry standard size.

Chip size: 3.4 x 1.6 x 0.3 mm

■ Platinum, 25 nm thick

Application: Tapping, Intermittent Contact and electric modes such as:

Scanning Capacitance Microscopy (SCM)

• Electrostatic Force Microscopy (EFM)

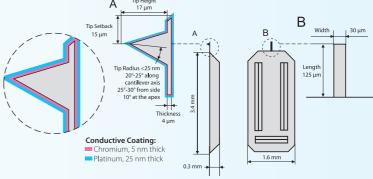
Kelvin Probe Force Microscopy (KPFM)

Coating: Electrically conductive coating of 5 nm Chromium and 25 nm Platinum on both sides of the cantilever. This coating also enhances the laser reflectivity of the cantilever.

Technical Data:	VALUE	RANGE
Resonance Frequency	190 kHz	± 30 kHz
Force Constant	48 N/m	28 to 75 N/m
Length	225 μm	± 10 μm
Mean Width	38 μm	± 5 μm
Thickness	7 μm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	<25 nm	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	

ElectriTap150-G

10 g Tap150-E-G-10 \$240


50 g Tap150-E-G-50 \$1000

The **AFM Probe** is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 25 nm gives good resolution and reproducibility.

This probe uses an **"on scan angle"** symmetric tip to provide a more symmetric representation of features over 200 nm.

The **AFM Probe Holder Chip** has alignment grooves on the backside and fits most commercial AFMs as it is industry standard size.

Chip size: 3.4 x 1.6 x 0.3 mm

Technical Data:	VALUE	RANGE
Resonance Frequency	150 kHz	± 75 kHz
Force Constant	5 N/m	1.5 to 15 N/m
Length	125 μm	± 10 μm
Mean Width	25 μm	± 5 μm
Thickness	2.1 μm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	<25 nm	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	

Application: Soft Tapping, Intermittent Contact and electric modes such as:

- Scanning Capacitance Microscopy (SCM)
- Electrostatic Force Microscopy (EFM)
- Kelvin Probe Force Microscopy (KPFM)

Coating: Electrically conductive coating of 5 nm Chromium and 25 nm Platinum on both sides of the cantilever.

This coating also enhances the laser reflectivity of the cantilever.

Tip Setback 15 µm Tip Setback 15 µm A Tip Radius < 25 nm 20"-25" along cantilever axis 25"-30" from side 10" at the apex Thickness Thicknes

The **AFM Probe** is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 25 nm gives good resolution and reproducibility.

This probe uses an **"on scan angle"** symmetric tip to provide a more symmetric representation of features over 200 nm.

ElectriMulti75-G

10 Multi75E-G-10 \$240

50 g Multi75E-G-50 \$1000

The **AFM Probe Holder Chip** has alignment grooves on the backside and fits most commercial AFMs as it is industry standard size.

Chip size: 3.4 x 1.6 x 0.3 mm

Application: Force Modulation Mode, Light Tapping Mode, Pulsed Force Mode and electric modes such as:

- Scanning Capacitance Microscopy (SCM)
- Electrostatic Force Microscopy (EFM)
- Kelvin Probe Force Microscopy (KPFM)

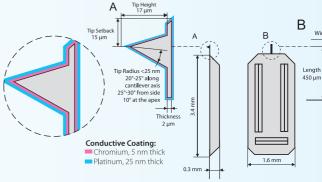
Coating: Electrically conductive coating of 5 nm Chromium and 25 nm Platinum on both sides of the cantilever.

This coating also enhances the laser reflectivity of the cantilever.

Technical Data:	VALUE	RANGE
Resonance Frequency	75 kHz	± 15 kHz
Force Constant	3 N/m	1 to 7 N/m
Length	225 μm	± 10 μm
Mean Width	28 μm	± 5 μm
Thickness	3 μm	±1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	< 25 nm	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	
Contact Resistance	300 Ohm on Platin	um thin film surface

ElectriCont-G

TO E ContE-G-10 \$240


50 g ContE-G-10 \$1000

The AFM Probe Holder Chip has alignment grooves on the backside and fits most commercial AFMs as it is industry standard size.

Chip size: 3.4 x 1.6 x 0.3 mm

The AFM Probe is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 25 nm gives good resolution and reproducibility.

This probe uses an "on scan angle" symmetric tip to provide a more symmetric representation of features over 200 nm

Width

50 µm

Technical Data:	VALUE	RANGE
Resonance Frequency	13 kHz	± 4 kHz
Force Constant	0.2 N/m	0.07 to 0.4 N/m
Length	450 μm	± 10 μm
Mean Width	50 μm	± 5 μm
Thickness	2 μm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	<25 nm	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	
Contact Resistance	300 Ohm on Platinum thin film surface	

Application: Contact Mode and electric modes such as:

- Scanning Capacitance Microscopy (SCM)
- Electrostatic Force Microscopy (EFM)
- Kelvin Probe Force Microscopy (KPFM)

Coating: Electrically conductive coating of 5 nm Chromium and 25 nm Platinum on both sides of the cantilever. This coating also enhances the laser reflectivity of the cantilever.

Gold Coated Silicon AFM Probes

Tap300GD-G

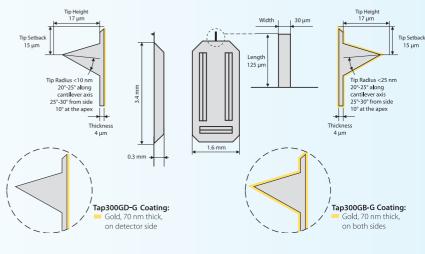
Tap300GB-G

10 g Tap300GD-G-10 \$240

Tap300GB-G-10 \$240

50 g Tap300GD-G-50 \$1000

Tap300GB-G-50 \$1000


The AFM Probe is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 10 nm for Tap300GD-G and less than 25 nm for Tap300GB-G gives good resolution and reproducibility.

This probe uses an "on scan angle" symmetric tip to provide a more symmetric representation of features over 200 nm.

The AFM Probe Holder Chip has alignment grooves on the backside and fits most commercial AFMs as it is industry standard size.

Chip size: 3.4 x 1.6 x 0.3 mm

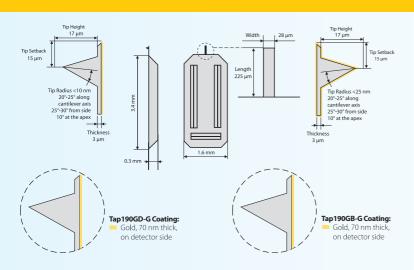
Technical Data:	VALUE	RANGE
Resonance Frequency	300 kHz	± 100 kHz
Force Constant	40 N/m	20 to 75 N/m
Length	125 μm	± 10 μm
Mean Width	30 μm	± 5 μm
Thickness	4 μm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	<10 nm (Tap300GD-G) / <25 nm (Tap300GB-G)	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	

Tap300GD-G

Application: Tapping Mode,

Intermittent Contact Mode

Coating: 70 nm Gold coating on detector side of the cantilever


Tap300GB-G

Application: Tapping Mode,

Intermittent Contact Mode and special applications

Coating: 70 nm Gold coating on both

sides of the cantilever

Tap190GD-G

Application: Tapping Mode,

Intermittent Contact Mode,

Long Cantilever

Coating: 70 nm Gold on detector

side of the cantilever

Tap190GB-G

Application: Tapping Mode,

Intermittent Contact Mode, Long Cantilever

and special applications

Coating: 70 nm Gold coating on both sides of the cantilever

Tap190GD-G

Tap190GB-G

10 Tap190GD-G-10 \$240

Tap190GB-G-10 \$240

50 g Tap190GD-G-50 \$1000

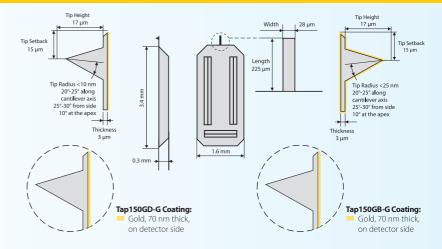
Tap190GB-G-50 \$1000

The AFM Probe is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 10 nm gives good resolution and reproducibility.

This probe uses an "on scan angle" symmetric tip to provide a more symmetric representation of features over 200 nm.

The AFM Probe Holder Chip has alignment grooves on the backside and fits most commercial AFMs as it is industry standard

Technical Data:	VALUE	RANGE
Resonance Frequency	190 kHz	± 30 kHz
Force Constant	48 N/m	28 to 75 N/m
Length	225 μm	± 10 μm
Mean Width	38 μm	± 5 μm
Thickness	7 μm	±1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	<10 nm (Tap190GD-G) / <25 nm (Tap190GB-G)	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	


The **AFM Probe** is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 10 nm for Tap150GD-G and less than 25 nm for Tap150GB-G gives good resolution and reproducibility.

This probe uses an **"on scan angle"** symmetric tip to provide a more symmetric representation of features over 200 nm.

The **AFM Probe Holder Chip** has alignment grooves on the backside and fits most commercial AFMs as it is industry standard size.

Chip size: 3.4 x 1.6 x 0.3 mm

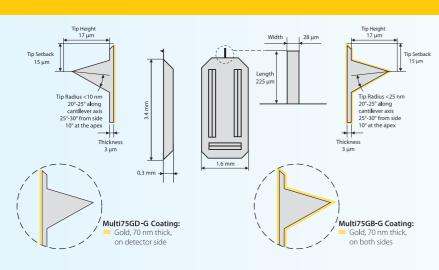
Technical Data:	VALUE	RANGE
Resonance Frequency	150 kHz	± 75 kHz
Force Constant	5 N/m	1.5 to 15 N/m
Length	125 μm	± 10 μm
Mean Width	25 μm	± 5 μm
Thickness	2.1 μm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	<10 nm (Tap150GD-G) / <25 nm (Tap150GB-G)	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	

Tap150GD-G

Application: Soft Tapping Mode,

Intermittent Contact Mode

Coating: 70 nm Gold on detector side of the cantilever


Tap150GB-G

Application: Soft Tapping Mode,

Intermittent Contact Mode and special applications

Coating: 70 nm Gold coating on both

sides of the cantilever

Multi75GD-G

Application: Force Modulation Mode,

Light Tapping Mode, Pulsed Force Mode(PFM)

Coating: 70 nm Gold on detector side of the cantilever

Multi75GB-G

Application: Force Modulation Mode, Light Tapping Mode, Pulsed Force Mode(PFM) and special applications

Coating: 70 nm Gold coating on both sides of the cantilever

Multi75GD-G

Multi75GB-G

10 Multi75GD-G-10 \$240

Multi75GB-G-10 \$240

50 Multi75GD-G-50 \$1000

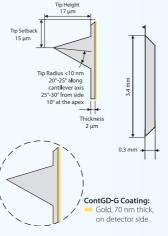
Multi75GB-G-50 \$1000

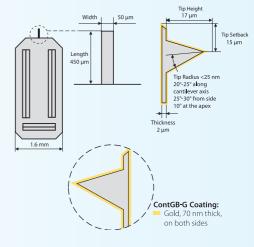
The AFM Probe is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 10 nm for Multi75GD and less than 25 nm for Multi75GB-G gives good resolution and reproducibility.

This probe uses an "on scan angle" symmetric tip to provide a more symmetric representation of features over 200 nm.

The AFM Probe Holder Chip has alignment grooves on the backside and fits most commercial AFMs as it is industry standard size.

Technical Data:	VALUE	RANGE
Resonance Frequency	75 kHz	± 15 kHz
Force Constant	3 N/m	1 to 7 N/m
Length	225 μm	± 10 μm
Mean Width	28 μm	± 5 μm
Thickness	3 µm	±1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	<10 nm (Multi75GD-G)	/ <25 nm (Multi75GB-G)
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	


The **AFM Probe** is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 10 nm for ContGD and less than 25 nm for ContGB-G gives good resolution and reproducibility.


This probe uses an "on scan angle" symmetric tip to provide a more symmetric representation of features over 200 nm.

The **AFM Probe Holder Chip** has alignment grooves on the backside and fits most commercial AFMs as it is industry standard size.

Chip size: 3.4 x 1.6 x 0.3 mm

Technical Data:	VALUE	RANGE
Resonance Frequency	13 kHz	± 4 kHz
Force Constant	0.2 N/m	0.07 to 0.4 N/m
Length	450 μm	± 10 μm
Mean Width	50 μm	± 5 μm
Thickness	2 μm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	<10 nm (ContGD-G) / <25 nm (ContGB-G)	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	

ContGD-G

Application: Contact Mode

Coating: 70 nm Gold on detector side of the cantilever

ContGB-G

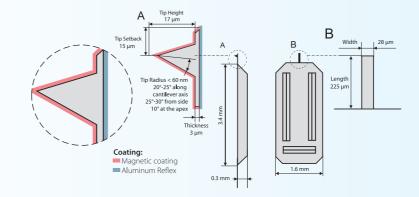
Application: Contact Mode

and special applications

Coating: 70 nm Gold coating on both

sides of the cantilever

Magnetic AFM Probes



MagneticMulti75-G

Magnetic AFM Probes

10 g Multi75M-G-10 \$240

50 g Multi75M-G-50 \$1000

Technical Data:	VALUE	RANGE
Resonance Frequency	75 kHz	± 15 kHz
Force Constant	3 N/m	1 to 7 N/m
Length	225 μm	± 10 μm
Mean Width	28 μm	± 5 μm
Thickness	3 μm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	<60 nm	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	

Application: Magnetic Force Microscopy (MFM)

Coating: Magnetic coating on the tip side

and aluminum reflex coating on detector side

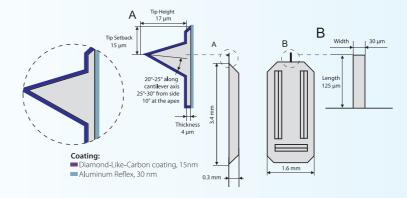
The **AFM Probe** is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 60 nm gives good resolution and reproducibility.

This probe uses an **"on scan angle"** symmetric tip to provide a more symmetric representation of features over 200 nm.

View image gallery for application images taken with this product!

The **AFM Probe Holder Chip** has **alignment grooves** on the backside and fits most commercial AFMs as it is industry standard size.

Diamond-Like-Carbon AFM Probes



Tap300DLC

DLC AFM Probes

10 g Tap300DLC-10 \$240

50 g Tap300DLC-50 \$1000

Technical Data:	VALUE	RANGE
Resonance Frequency	300 kHz	± 100 kHz
Force Constant	40 N/m	20 to 75 N/m
Length	125 μm	± 10 μm
Mean Width	30 μm	± 5 μm
Thickness	4 μm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	< 15 nm	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	

Application: Tapping Mode, Intermittent Contact Mode

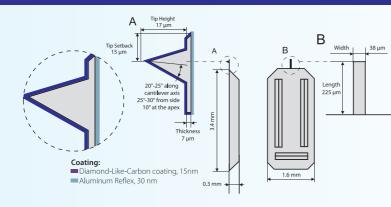
Coating: Diamond-Like-Carbon coating on the tip side of the cantilever, 15 nm thick;

Aluminum reflex coating on detector side of the

cantilever, 30 nm thick

The **AFM Probe** is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 15 nm gives good resolution and reproducibility.

This probe uses an **"on scan angle"** symmetric tip to provide a more symmetric representation of features over 200 nm.


The AFM Probe Holder Chip has alignment grooves on the backside and fits most commercial AFMs as it is industry standard size.

DLC AFM Probes

Tap190DLC

10 g Tap190DLC-10 \$240

50 g Tap190DLC-50 \$1000

Application: Tapping Mode, Intermittent Contact Mode, Long Cantilever

Coating: Diamond-Like-Carbon coating on the tip side of the

cantilever, 15 nm thick;

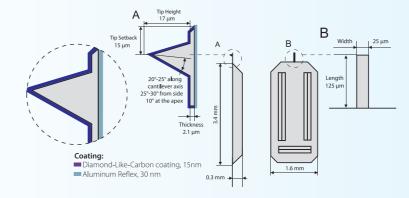
Aluminum reflex coating on detector side of the

cantilever, 30 nm thick

The **AFM Probe** is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 15 nm gives good resolution and reproducibility.

This probe uses an **"on scan angle"** symmetric tip to provide a more symmetric representation of features over 200 nm.

The AFM Probe Holder Chip has alignment grooves on the backside and fits most commercial AFMs as it is industry standard size.


Technical Data:	VALUE	RANGE
Resonance Frequency	190 kHz	± 30 kHz
Force Constant	48 N/m	28 to 75 N/m
Length	225 μm	± 10 μm
Mean Width	38 μm	± 5 μm
Thickness	7 μm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	<15 nm	
Half Cone Angles	20°-25° along canti 25°-30° from side 10° at the apex	lever axis

Tap150DLC

DLC AFM Probes

10 g Tap150DLC-10 \$240

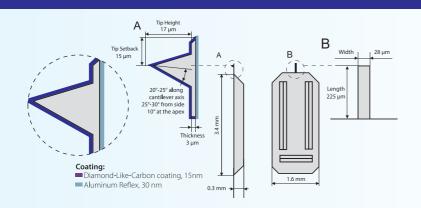
50 g Tap150DLC-50 \$1000

Technical Data:	VALUE	RANGE
Resonance Frequency	150 kHz	± 75 kHz
Force Constant	5 N/m	1.5 to 15 N/m
Length	125 μm	± 10 μm
Mean Width	25 μm	± 5 μm
Thickness	2.1 μm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	< 15 nm	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	

Application: Soft Tapping Mode, Intermittent Contact Mode

Coating: Diamond-Like-Carbon coating on the tip side of the cantilever, 15 nm thick;

Aluminum reflex coating on detector side of the


cantilever, 30 nm thick

The **AFM Probe** is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 15 nm gives good resolution and reproducibility.

This probe uses an **"on scan angle"** symmetric tip to provide a more symmetric representation of features over 200 nm.

The AFM Probe Holder Chip has alignment grooves on the backside and fits most commercial AFMs as it is industry standard size.

DLC AFM Probes

Multi75DLC

10 Multi75DLC-10 \$240

50 g Multi75DLC-50 \$1000

Application: Force Modulation Mode, Pulsed Force Mode (PFM)

Coating: Diamond-Like-Carbon coating on the tip side of the

cantilever, 15 nm thick;

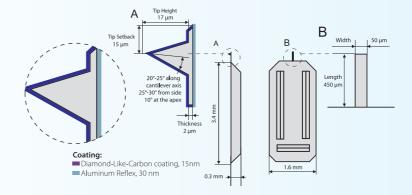
Aluminum reflex coating on detector side of the

cantilever, 30 nm thick

The **AFM Probe** is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 15 nm gives good resolution and reproducibility.

This probe uses an **"on scan angle"** symmetric tip to provide a more symmetric representation of features over 200 nm.

The AFM Probe Holder Chip has alignment grooves on the backside and fits most commercial AFMs as it is industry standard size.


Technical Data:	VALUE	RANGE
Resonance Frequency	75 kHz	± 15 kHz
Force Constant	3 N/m	1 to 7 N/m
Length	225 μm	± 10 μm
Mean Width	28 μm	± 5 μm
Thickness	3 μm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	< 15 nm	
Half Cone Angles	20°-25° along canti 25°-30° from side 10° at the apex	lever axis

ContDLC

DLC AFM Probes

10 g ContDLC-10 \$240

50 g ContDLC-50 \$1000

Technical Data:	VALUE	RANGE
Resonance Frequency	13 kHz	± 4 kHz
Force Constant	0.2 N/m	0.07 to 0.4 N/m
Length	450 μm	± 10 μm
Mean Width	50 μm	± 5 μm
Thickness	2 μm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Tip Radius	< 15 nm	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	

Application: Contact Mode

Coating: Diamond-Like-Carbon coating on the tip side of the cantilever, 15 nm thick;

Aluminum reflex coating on detector side of the

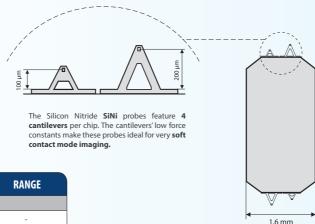
cantilever, 30 nm thick

The **AFM Probe** is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 15 nm gives good resolution and reproducibility.

This probe uses an **"on scan angle"** symmetric tip to provide a more symmetric representation of features over 200 nm.

The AFM Probe Holder Chip has alignment grooves on the backside and fits most commercial AFMs as it is industry standard size.

Silicon Nitride AFM Probes


Silicon Nitride AFM Probes

SiNi

30 g SiNi-30 \$379

100 g SiNi-100 \$1200

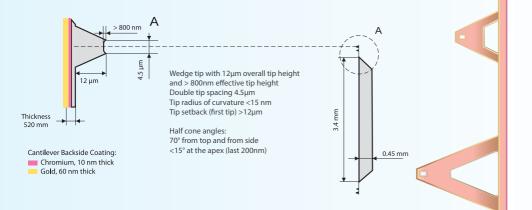
300 \$3450 \$3450

The **AFM Probe Holder Chip** fits most commercial AFMs as it is industry standard size.

The SiNi has triangular Silicon Nitride cantilevers with 2 different lengths.

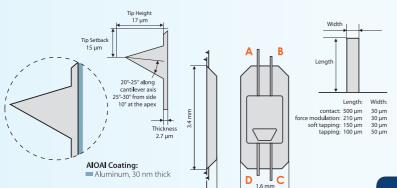
Chip size: 3.4 x 1.6 x 0.45 mm

Technical Data:	TYPICAL VALUES		RANGE
	short cantilever	long cantilever	
Resonance Frequency	30 kHz	10 kHz	-
Force Constant	0.27 N/m	0.06 N/m	-
Length	100 μm	200 μm	± 10 nm
Width	16 μm	30 μm	± 5 nm
Thickness	520 nm (45 nm SiNi + 70 nm coating)		± 50 nm
Tip Height (Wedge Tip)	12 μm (overall) > 800 nm (effective)		± 2 μm -
Double Tip Spacing	4.5 μ	± 0.5 μm	
Tip Radius	< 15 nm		
Half Cone Angles	35° (macroscopic)		
Cantilever Bending	< 3°		


Application: Soft Contact Mode

General: 4 Silicon Nitride triangular cantilevers,

2 different lengths


Coating: 70 nm thick, Chromium-Gold

on detector side of the cantilever

All In One Silicon AFM Probes

The **All-in-One** probes offer four cantilevers with different geometry for all topography measurement modes: **Contact, Force Modulation, Soft Tapping** and **Tapping Mode**.

The resonance frequencies and force constants are similar to the ones of the well-established models **Contact-G, Multi75-G, Tap150-G** and **Tap300-G**.

The long cantilevers ${\bf A}$ for contact mode and ${\bf B}$ for force modulation mode are located at one end of the chip while the short cantilevers ${\bf C}$ for soft tapping mode and ${\bf D}$ for tapping mode are located at the opposite end.

The short cantilever end is marked by a trapezoidal pattern visible with bare eyes.

The **AFM Probe** is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 10 nm gives good resolution and reproducibility.

This probe uses an "on scan angle" symmetric tip to provide a more symmetric representation of features over 200 nm.

The **AFM Probe Holder Chip** fits most commercial AFMs as it is industry standard size.

Chip size: 3.4 x 1.6 x 0.3 mm

All-In-	One	All-In-O	neAl
10 g AlO-10	\$240	AIOAI-10	\$240
50 g A10-50	\$1000	AIOAI-50	\$1000

Application: Several measurement modes

Coating: None (AIO) or 30 nm thick Aluminum reflex coating (AIOAI)

Technical Data:	TYPICAL VALUE	RANGE	TYPICAL VALUE	RANGE
Cantilever/Similar to:	A / Cor	ntact-G	B / M	ulti75-G
Resonance Frequency	15 kHz	± 5 kHz	80 kHz	± 30 kHz
Force Constant	0.2 N/m	0.04 - 0.7 N/m	2.7 N/m	0.04 - 10 N/m
Length	500 μm	± 10 μm	210 μm	± 10 μm
Mean Width	30 μm	± 5 μm	30 μm	± 5 μm
Thickness	2.7 μm	± 1 μm	2.7 μm	± 1 μm
Cantilever/Similar to:	C / Tap	150-G	D/T	ap300-G
Resonance Frequency	150 kHz	80 ± kHz	350 kHz	150 ± kHz
Force Constant	7.4 N/m	1 - 29N/m	40 N/m	7 - 160 N/m
Length	150 μm	± 10 μm	100 μm	± 10 μm
Mean Width	30 μm	± 5 μm	50 μm	± 5 μm
Thickness	2.7 μm	± 1 μm	2.7 μm	±1 μm
Tip Specs:	height: 17 μ	m (±2); radius:	<10nm; tip setb	ack: 15 μm (±5);

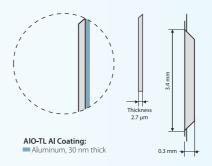
All-In-One-Tipless / All-In-One Al-Tipless

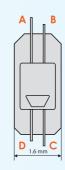
10 g AIO-TL-10 \$240 AIOAI-TL-10 \$240

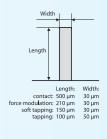
50 g AIO-TL-50 \$1000 AIOAI-TL-50 \$1000

Application: Several measurement modes

Coating: None (AIO-TL) or 30 nm thick Aluminum


reflex coating (AIOAI-TL)


Technical Data:	TYPICAL VALUE	RANGE	TYPICAL VALUE	RANGE
Cantilever/Similar to:	A / Cor	ntact-G	B / Mu	lti75-G
Resonance Frequency	15 kHz	± 5 kHz	80 kHz	± 30 kHz
Force Constant	0.2 N/m	0.04 - 0.7 N/m	2.7 N/m	0.04 - 10 N/m
Length	500 μm	± 10 μm	210 μm	± 10 μm
Mean Width	30 μm	± 5 μm	30 μm	± 5 μm
Thickness	2.7 μm	± 1 μm	2.7 μm	± 1 μm
Cantilever/Similar to:	C /Tap	C /Tap150-G		o300-G
Resonance Frequency	150 kHz	80 ± kHz	350 kHz	150 ± kHz
Force Constant	7.4 N/m	1 - 29 N/m	40 N/m	7 - 160 N/m
Length	150 μm	± 10 μm	100 μm	± 10 μm
Mean Width	30 μm	± 5 μm	50 μm	± 5 μm


 $\pm 1 \mu m$

 $2.7 \mu m$

 $\pm 1 \mu m$

The All-in-One probes offer four cantilevers with different geometry for all topography measurement modes: Contact, Force Modulation, Soft Tapping and Tapping Mode.

The resonance frequencies and force constants are similar to the ones of the well-established models Contact-G, Multi75-G, Tap150-G and Tap300-G.

The long cantilevers A for contact mode and B for force modulation mode are located at one end of the chip while the short cantilevers C for soft tapping mode and D for tapping mode are located at the opposite end.

The short cantilever end is marked by a trapezoidal pattern visible with bare eyes.

The AFM Probe is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 10 nm gives good resolution and reproducibility.

This probe uses an "on scan angle" symmetric tip to provide a more symmetric representation of features over 200 nm.

The AFM Probe Holder Chip fits most commercial AFMs as it is industry standard size.

Chip size: 3.4 x 1.6 x 0.3 mm

2.7 um

Thickness

Tip Setback

17 µm

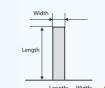
Tip Radius <25 nm 20°-25° along cantilever axis

25°-30° from side

Conductive Coating: Chromium, 5 nm thick Platinum, 25 nm thick

10° at the apex

Thickness


0.3 mm -

ElectriAll-In-One

10 g AIOE-10 \$240

50 § AI0E-50

\$1000

Lenath: Width: contact: 500 µm 30 µm force modulation: 210 µm soft tapping: 150 µm 30 µm tapping: 100 µm 50 µm

Application:

Various electric modes

Coating:

Electrically conductive coating of 5 nm Chromium and 25 nm Platinum on both sides of the cantilever. This coating also enhances the laser reflectivity of the cantilever.

Technical Data:	TYPICAL VALUE	RANGE	TYPICAL VALUE	RANGE
Cantilever/Similar to:	A / Cor	ntact-G	B / M	ulti75-G
Resonance Frequency	15 kHz	± 5 kHz	80 kHz	± 30 kHz
Force Constant	0.2 N/m	0.04 - 0.7 N/m	2.7 N/m	0.04 - 10 N/m
Length	500 μm	± 10 μm	210 μm	± 10 μm
Mean Width	30 μm	± 5 μm	30 μm	± 5 μm
Thickness	2.7 μm	±1 μm	2.7 μm	±1 μm
Cantilever/Similar to:	C / Tap	150-G	D/T	ap300-G
Resonance Frequency	150 kHz	80 ± kHz	350 kHz	150 ± kHz
Force Constant	7.4 N/m	1 - 29 N/m	40 N/m	7 - 160 N/m
Length	150 μm	± 10 μm	100 μm	± 10 μm
Mean Width	30 μm	± 5 μm	50 μm	± 5 μm
Thickness	2.7 μm	± 1 μm	2.7 μm	±1 μm
Tip Specs:	height: 17 µ	m (±2); radius: <	< 25nm: tip setb	ack: 15 µm (±5);

Versatile monolithic silicon AFM probe with 4 different platinum coated cantilevers on a single AFM holder chip for various applications; contact mode, force modulation mode, soft tapping mode and high frequency tapping / non-contact mode and electric modes such as: Scanning Capacitance Microscopy (SCM), Electrostatic Force Microscopy (EFM) and Kelvin Probe Force Microscopy (KPFM).

The resonance frequencies and force constants are similar to the ones of the well-established models Contact-G, Multi75-G, Tap150-G and Tap300-G.

The long cantilevers A for contact mode and B for force modulation mode are located at one end of the chip while the short cantilevers C for soft tapping mode and D for tapping mode are located at the opposite end. The short cantilever end is marked by a trapezoidal pattern visible with bare eyes.

1.6 mm

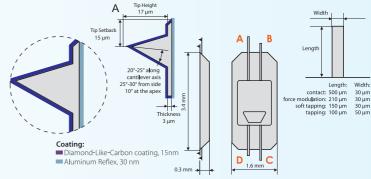
This probe uses an "on scan angle" symmetric tip to provide a more symmetric representation of features over 200 nm. The consistent tip radius of less than 25 nm gives good resolution and reproducibility.

The AFM Probe Holder Chip fits most commercial AFMs as it is industry standard size.

All-In-One-DLC

10 g AIO-DLC-10 \$240

50 & AIO-DLC-50 \$1000


Several measurement modes Application:

Coating: Diamond-Like-Carbon coating on the tip side of the

cantilever, 15 nm thick; Aluminum reflex coating on

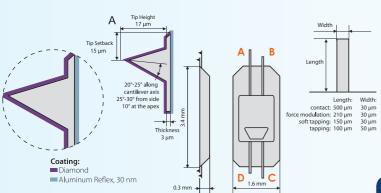
detector side of the cantilever, 30 nm thick

Technical Data:	TYPICAL VALUE	RANGE	TYPICAL VALUE	RANGE
Cantilever/Similar to:	A / Cor	ntact-G	B / Multi75-G	
Resonance Frequency	15 kHz	± 5 kHz	80 kHz	± 30 kHz
Force Constant	0.2 N/m	0.04 - 0.7 N/m	2.7 N/m	0.04 - 10 N/m
Length	500 μm	± 10 μm	200 μm	± 10 μm
Mean Width	30 μm	± 5 μm	30 μm	± 5 μm
Thickness	2.7 μm	± 1 μm	2.7 μm	±1 μm
Cantilever/Similar to:	C /Tap150-G		D / Tap300-G	
Resonance Frequency	150 kHz	$80 \pm kHz$	350 kHz	150 ± kHz
Force Constant	7.4 N/m	1 - 29 N/m	40 N/m	7 - 160 N/m
Length	150 μm	± 10 μm	100 μm	± 10 μm
Mean Width	30 μm	± 5 μm	50 μm	± 5 μm
Thickness	2.7 μm	± 1 μm	2.7 μm	± 1 μm
Tip Specs:	height: 17 μm (±2	μm); radius: < 15n	m; tip setback: 1	5 μm (±5 μm);

The All-in-One probes offer four cantilevers with different geometry for all topography measurement modes: Contact, Force Modulation, Soft Tapping and Tapping Mode.

The resonance frequencies and force constants are similar to the ones of the well-established models Contact-G, Multi75-G, Tap150-G and Tap300-G.

The long cantilevers A for contact mode and B for force modulation mode are located at one end of the chip while the short cantilevers C for soft tapping mode and D for tapping mode are located at the opposite end.


The short cantilever end is marked by a trapezoidal pattern visible with bare eyes.

The AFM Probe is micromachined, made of monolithic Silicon, exhibiting excellent uniformity and a sharp tip radius. The consistent tip radius of less than 25 nm gives good resolution and reproducibility.

This probe uses an "on scan angle" symmetric tip to provide a more symmetric representation of features over 200 nm.

The AFM Probe Holder Chip fits most commercial AFMs as it is industry standard size.

All In One

Application: Various electric modes

Coating: Diamond coating on the tip side of the cantilever; Aluminum reflex coating on detector side of the cantilever, 30 nm thick

5 ½ AIO-DD-5 \$730

10 ½ AIO-DD-10 \$1165

20 ½ AIO-DD-20 \$1995

50 ½ AIO-DD-50 \$4970

All-In-One-DD

Versatile monolithic silicon AFM probe with 4 different cantilevers on a single AFM holder chip for various applications: Nanolithography, Nanoindentation and electric modes such as: Scanning Capacitance Microscopy (SCM), Electrostatic Force Microscopy (EFM) and Conductive Atomic Force Microscopy (C-AFM).

The long cantilevers A for contact mode and B for force modulation mode are located at one end of the chip while the short cantilevers C for soft tapping mode and D for tapping mode are located at the opposite end. The short cantilever end is marked by a trapezoidal pattern visible with bare eyes.

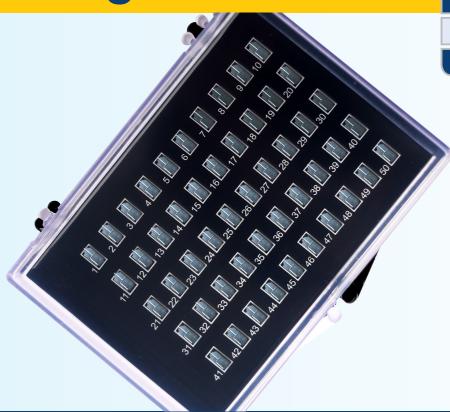
The doped polycrystalline diamond tip coating provides unprecedented hardness and durability,

as well as electrical conductivity for demanding electrical applications. The resulting tip radius is in the range 100-300nm.

This probe uses an **"on scan angle"** symmetric tip to provide a more symmetric representation of features over 200 nm.

The **AFM Probe Holder Chip** fits most commercial AFMs as it is industry standard size.

Chip size: 3.4 x 1.6 x 0.3 mm


Technical Data:	TYPICAL VALUE	RANGE	TYPICAL VALUE	RANGE
Cantilever/Similar to:	A / Contact-G		B / M	ulti75-G
Resonance Frequency	19 kHz	± 5 kHz	110 kHz	± 30 kHz
Force Constant	0.5 N/m	0.02 - 0.9 N/m	6.5 N/m	3 - 12 N/m
Length	500 μm	± 10 μm	210 μm	± 10 μm
Mean Width	30 μm	± 5 μm	30 μm	± 5 μm
Thickness	2.7 μm	± 1 μm	2.7 μm	±1 μm
Cantilever/Similar to:	C / Tap150-G		D / Tap300-G	
Resonance Frequency	200 kHz	60 ± kHz	450 kHz	150 ± kHz
Force Constant	18 N/m	8 - 35 N/m	100 N/m	48- 190 N/m
Length	150 μm	± 10 μm	100 μm	± 10 μm
Mean Width	30 μm	± 5 μm	50 μm	± 5 μm
Thickness	2.7 μm	± 1 μm	2.7 μm	±1 μm
Tip Specs:	height: 17 μm (±	±2 μm); radius: 100	0 - 300 nm; tip setb	ack: 15 μm (±5 μm);

BudgetComboBox

Mixed box of 50 BudgetSensors AFM Probes of your choice

BudgetComboBox

Whatever You Want!

Mixed box of 50 BudgetSensors AFM Probes of your choice

BudgetComboBox gives you the freedom to choose freely your personalized box with AFM probes out of any available BudgetSensors AFM Probe models you need.

Ordering:

Order your **BudgetComboBox** online at www.budgetsensors.com or from our distributors.

Prices:

Following our motto "Quality meets Price", we are offering you a very transparent and fair price structure of your personalized BudgetComboBox.

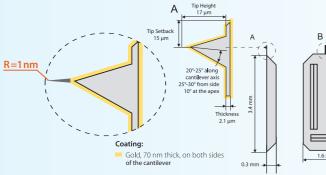
The price of each **BudgetComboBox** is calculated as the value of all AFM Probes in the relevant box, where the price of a single AFM Probe is the price of the same AFM Probe if you ordered it in a regular pack of 50 pieces.

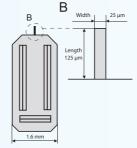
Shipment Conditions:

BudgetComboBox is a personalized product made to customer's request. Nevertheless, we are able to ship it from Europe within 48 hrs after receiving a Purchase Order.

If Ordered via one of our distributors, please allow the additional transit time needed to ship it to you in the fastest possible way.

Single Hi-Res AFM Probes




SINGLE HI-RES AFM PROBES

SHR300

5 ∰ SHR300-5

\$400

Application: High Resolution Tapping Mode,

Intermittent Contact Mode

Coating: 70 nm Gold on both sides of the cantilever.

Carbon spike not coated!

The **AFM Probe Holder Chip** has **alignment grooves** on the backside and fits most commercial AFMs as it is industry standard size.

Chip size: 3.4 x 1.6 x 0.3 mm

SINGLE CARBON SPIKE ON SILICON APEX!

Based on BudgetSensors' well established Tap300GB-G probe

The SHR-300 probe has a single hydrophobic diamond-like carbon extratip at the apex of a Gold coated silicon etched probe. There are no additional smaller extratips near the main one, just one well defined extratip. The SHR-150 can be used even for imaging of relatively rough surfaces – there will not be repeated features in the scan due to tip artefacts from extratips with different length and angle.

Technical Data:	VALUE	RANGE
Resonance Frequency	300 kHz	± 100 kHz
Force Constant	40 N/m	20 to 75 N/m
Length	125 μm	± 10 μm
Mean Width	30 μm	± 5 μm
Thickness	4 μm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Typical Spike Height	100 nm - 200 nm	
Typical Spike Radius	1 nm	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	

SINGLE HI-RES AFM PROBES

SHR150

5 ∰ SHR150-5

\$400

Application: High Resolution Soft Tapping Mode,

Intermittent Contact Mode

Coating: 70 nm Gold on both sides of the cantilever.

Carbon spike not coated!

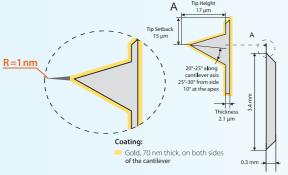
Technical Data:	VALUE	RANGE
Resonance Frequency	150 kHz	± 75 kHz
Force Constant	5 N/m	1.5 to 15 N/m
Length	125 μm	± 10 μm
Mean Width	25 μm	± 5 μm
Thickness	2.1 μm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Typical Spike Height	100 nm - 200 nm	
Typical Spike Radius	1 nm	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	

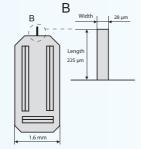
The **AFM Probe Holder Chip** has **alignment grooves** on the backside and fits most commercial AFMs as it is industry standard size.

Chip size: 3.4 x 1.6 x 0.3 mm

SINGLE CARBON SPIKE ON SILICON APEX!

Based on BudgetSensors' well established Tap150-G probe


The SHR-150 probe has a single hydrophobic diamond-like carbon extratip at the apex of a Gold coated silicon etched probe. There are no additional smaller extratips near the main one, just one well defined extratip. The SHR-150 can be used even for imaging of relatively rough surfaces – there will not be repeated features in the scan due to tip artefacts from extratips with different length and angle.


SINGLE HI-RES AFM PROBES

SHR75

5 § SHR75-5

\$400

The **AFM Probe Holder Chip** has **alignment grooves** on the backside and fits most commercial AFMs as it is industry standard size.

Chip size: 3.4 x 1.6 x 0.3 mm

SINGLE CARBON SPIKE ON SILICON APEX!

Based on BudgetSensors' well established Multi75GB-G probe

The SHR-75 probe has a single hydrophobic diamond-like carbon extratip at the apex of a Gold coated silicon etched probe. There are no additional smaller extratips near the main one, just one well defined extratip. The SHR-150 can be used even for imaging of relatively rough surfaces – there will not be repeated features in the scan due to tip artefacts from extratips with different length and angle.

Application: High Resolution Soft Tapping Mode,

Intermittent Contact Mode

Coating: 70 nm Gold on both sides of the cantilever.

Carbon spike not coated!

Technical Data:	VALUE	RANGE
Resonance Frequency	75 kHz	± 15 kHz
Force Constant	3 N/m	1 to 7 N/m
Length	225 μm	± 10 μm
Mean Width	28 μm	± 5 μm
Thickness	3 µm	± 1 μm
Tip Height	17 μm	± 2 μm
Tip Setback	15 μm	± 5 μm
Typical Spike Height	100 nm - 200 nm	
Typical Spike Radius	1 nm	
Half Cone Angles	20°-25° along cantilever axis 25°-30° from side 10° at the apex	

Calibration Standards

Tip Check

Calibration Standard

TipCheck

\$180

The Problem

When imaging a sample by AFM, it may be difficult to know whether the surface is mapped accurately or is affected by a blunt or broken tip. Blunt or broken tips will falsify measurement results like surface roughness or structures dimensions dramatically!

To be sure you are using a proper tip, used tips must be thrown away or checked by SEM regularly, both methods being extremely uneconomic or time consuming.

The Solution

BudgetSensors introduces the **TipCheck** - an SPM sample for fast and convenient determination of the AFM tip condition.

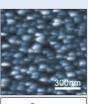
The clear differences between the tips become apparent even within a single scan line. Therefore the TipCheck offers a fast and easy way to compare and categorize different AFM probes with respect to tip apex, shape and sharpness.

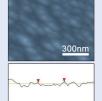
You can easily check whether your tip is still good, starts showing wear or is already blunted or broken without the need of scanning an entire image or doing SEM inspection.

Additionally, this sample works perfectly with Auto Tip Qualification and Tip Characterization software that is available on the market.

The **BudgetSensors TipCheck** sample consists of an extremely wear-resistant thin film coating that is deposited on a silicon chip.

This thin film coating shows a granular, sharply peaked nanostructure which makes it ideal for reversely imaging an AFM probe's tip apex. The die size of the TipCheck is 5x5 mm.


The following figures show a comparison between different probe tips used to image the **TipCheck** sample.


The scan size is 1 x 1 μ m for all images. The height scale is 100 nm.

Below the topography images you can find a representative cross-section of the respective image.

Height Standards

Height Standard

 ○ N = ½
 HS-20MG
 \$200

 ○ N = ½
 HS-100MG
 \$200

 ○ N = ½
 HS-500MG
 \$200

Why do you need Height Calibration Standards?

Atomic Force Microscopy has become a valuable tool not only for visualization but also for performing accurate measurements on the nanometer and micrometer scale.

In order to make the most of their measurement capabilities, AFM systems need to be properly calibrated

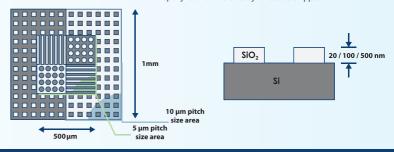
HS-20MG / **HS-100MG** / **HS-500MG** are height standards introduced by **BudgetSensors** as a response to the increased demand for affordable high-quality AFM calibration standards.

The **HS-20MG / HS-100MG / HS-500MG** feature Silicon Dioxide structure arrays on a 5x5 mm Silicon chip.

The fabrication process guarantees excellent uniformity of the structures across the chip. This in turn ensures easy and reliable Z-axis calibration of your AFM system.

The calibration area is situated in the center of the chip. It is easy to find with the AFM optical system.

The structure step height is in the range of 20 nm for HS-20MG, 100 nm for HS-100MG and 500 nm for HS-500MG. The exact value for each chip is indicated on the box label.


Arrays of structures with different shape and pitch are integrated on the chip. The larger square (1x1 mm) contains square pillars and holes with a 10 µm pitch.

The smaller square ($500x500 \mu m$) contains circular pillars and holes as well as lines in the X- and Y-direction with a 5 μm pitch.

Aside from Z-axis calibration, this design also allows X- and Y-axis calibration for bigger scanners (40-100 µm range). What is more, the structure symmetry makes it possible to calibrate your AFM system without the need to rotate and realign the sample in-between X-and Y-axis calibration.

The HS-20MG / HS-100MG / HS-500MG chips are glued onto a 12 mm metal disc using a high-quality electrically-conductive epoxy resin and it is ready for use as shipped.

		TECHNICAL DATA AT A GLANCE
Die size:		Structure geometry:
5x5mm		- square holes and pillars with a 10µm pitch arranged in a 1x1mm square
Step height: *		
HS-20MG	~20 nm	- circular pillars and holes, and lines in the x- and y-directi on with a 5µm pitch arranged
HS-100MG	~ 100 nm	in a 500x500µm square
HS-500MG	~ 500 nm	
*The precise value is stated on the label of each box		

XYZ Calibration Nanogrid

XYZ Calibration Nanogrid

CS-20NG

\$590

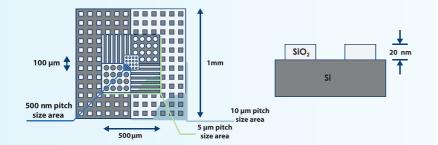
Why XYZ Calibration Nanogrid?

In order to make the most of their measurement capabilities, AFM systems need to be properly calibrated.

Therefore, the more precise your calibration standard, the calibration.

better AFM measurement results can be achieved. In this aspect, nanogrid calibration standards allow the most precise AFM system calibration.

Our Solution


CS-20NG is an advanced XYZ calibration nanogrid that enables calibration down to the nanometer level. It features silicon dioxide structure arrays on a 5x5 mm silicon chip. The fabrication process guarantees excellent uniformity of the structures across the chip. This in turn ensures easy and reliable X, Y and Z axis calibration of your AFM system.

The calibration area is situated in the center of the chip. It is easy to find with the AFM optical system.

The structure step height is in the range of 20 nm. The exact value for each chip is indicated on the box label.

Arrays of structures with different shape and pitch are integrated on the chip. The large square (1x1 mm) contains square pillars and holes with a 10 μ m pitch. The middle square contains circular pillars and holes as well as lines in the X- and Y-direction with a 5 μ m pitch. The small square contains circular holes with a 500 nm pitch.

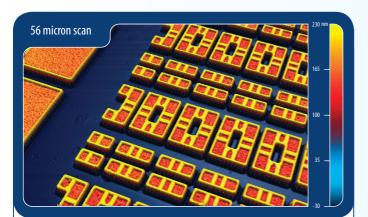
The CS-20NG is suitable for both lateral and vertical AFM scanner calibration. The structure symmetry makes it possible to calibrate your AFM system in one step without rotating the sample inbetween X- and Y-axis calibration. The CS-20NG chip is glued onto a 12 mm metal disc using a high-quality electrically conductive epoxy resin and it is ready for use as shipped.

TECHNICAL DATA AT A GLANCE		
Die size:	Structure geometry:	
5x5mm	- Square holes and pillars with 10 μm pitch arranged in a 1x1mm square	
Step height: *	- Circular pillars and holes, and lines in the x- and y- direction with a 5 µm pitch arranged in a 500x500 µm	
	square	
~20 nm	- Circular holes with a 500nm pitch arranged in a 100x100 µm square	
*The precise value is stated on the label of each box		

Image Gallery Application Images

Image Gallery

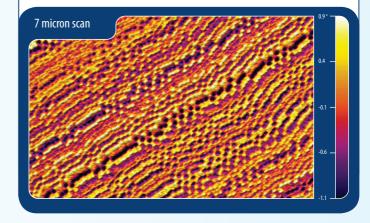
Water etched gypsum crystal Scanned with Tap300Al-G AFM Probe


Application images by courtesy of **Scott MacLaren**, University of Illinois at Urbana-Champaign, USA

Polymer blend of polystyrene and polycaprolactone Scanned with Tap300Al-G AFM Probe

Application images by courtesy of **Scott MacLaren**, University of Illinois at Urbana-Champaign, USA

Image Gallery


SRAM memory deviceScanned with Tap300Al-G AFM Probe

Application images by courtesy of **Scott MacLaren**, University of Illinois at Urbana-Champaign, USA

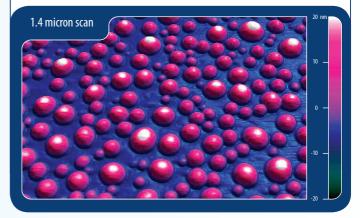
MFM image of high density hard disk (500 GB capacity)

Scanned with Magnetic Multi75-G AFM Probe

Application images by courtesy of **Scott MacLaren**, University of Illinois at Urbana-Champaign, USA

Image Gallery

Rosemary leaf


Scanned with Tap300Al-G AFM Probe

Application images by courtesy of **Scott MacLaren**, University of Illinois at Urbana-Champaign, USA

Polystyrene thin film

Scanned with Tap300Al-G AFM Probe

Application images by courtesy of **Scott MacLaren**, University of Illinois at Urbana-Champaign, USA

48 Joliot Curie Str., 1113 Sofia, Bulgaria info@budgetsensors.com

Innovative Solutions Bulgaria Ltd.
International brochure - October 2018

tel: +359 2 963 0941 fax: +359 2 963 0732

WWW.BUDGETSENSORS.COM